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THE -THEORY OF MAGNETOHYDRODYNAMIC POWER GENERATORS

By

George W. Sutton

ABSTRACT

Magnetohydrodynamic power generation has now been under active de-

velopment for over four years, but there has not yet appeared any complete

description of the theory. This report is intended to close this obvious gap.

Most of the theory presented herein was developed by the author and personnel

at the General Electriq Company. Some of this material has not been published

previously; those results which have been published are referenced.

The topics covered are: electrical conductivity in MHD generators,

optimum "seed" ratio, local analyses of the continuous and segmented electrode

geometries; Hall geometry, helical flow geometry; magnetically induced ioniza-

tion; polytropic efficiencies; compressible analyses of the constant velocity,

temperature, Mach number, pressure and cross -sectional area flows; end

losses; AC generation; cycle efficiencies; and a summary of generating exper-

iments at the General Electric Company and other places. Geometrieu other

than linear are not considered herein; the most important of those omitted is the

vortex generator.

This report has been written as Chapter 14 for a forthcoming book, Engi-

neering Magnetohydrodynamics. References to other chapters refer to chapters

in that book.
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14.1 INTRODUCTION

In principle, the magnetohydrodynamic (MHD) generator is a variation of

the Faraday generator, in which the solid conductors are replaced by a moving

electrically conducting fluid. Historically, Faraday recognized the possibilities

of this method; he planned to use the interaction of the motion of the Thames

River with the magnetic field of the earth to generate electrical power; however,

his experiments yielded only sporadic results. 1

A more obvious source of electrical power is fuel. The conversion is

usually accomplished by combusting a chemical or fossil fuel with an oxidizer,

which converts the stored chemical energy of the fuel into thermal energy of the

products of combustion. This thermal energy is then usually converted directly

into mechanical energy in an internal combustion engine or gas turbine; or the

thermal energy may be transferred to a different working fluid from which

mechanical power is extracted in a closed cycle, such as a steam or

gas cycle.

In the case of nuclear energy, this is normally converted into thermal

energy in the fuel rods, which is transferred to a cooling fluid, and then converted

into mechanical energy. Finally, the mechanical energy is converted into elec-

trical energy by means of an alternator, in either of these two systems.

Now, in both cases, if the primary working fluid, that is, the combustion

gases or nuclear reactor coolant, can be made electrically conducting and can

have part of its thermal energy converted into directed kinetic energy, then the

working fluid can be passed directly into a magnetic field, and there convert

its kinetic energy into electrical energy directly, thus eliminating the "mechanical"

intermediary step.

The potential advantage of MHD power generation is based on utilizing

higher temperatures of the working fluid than are compatible with turbines. This

may lead to either higher overall thermal efficiencies, or in the case of "space

power" to a higher reject temperature and thus a reduction of the radiator area.



In comparison to the usually wire-wound generator, the MHD generator is

more complex to analyze, because the electrical conductivity and gas velocity

are variable properties and the gas is not constrained to move n an exact pre-

scribed path. In one respect, however, the MHD generator is simpler because

the magnetic field due to the induced currents is negligible.

In comparison to the analysis of compressible flow in a duct, the flow in the

MHD generator is also more complex because the Iorentz force and ohmic heat-

ing vary over a cross-section, which changes the boundary layer growth.

Also, the Hall effect can, under certain circumstances, introduce strong cross-

flow components. To make the analysis tractable, we will therefore make

suitable simplifying assumptions as needed.

The basic principle of the MHD generator is that the electrical power

E • J can be made negative by the presence of the magnetic field; that is, since

j = a. (E + v x B), J can have a component in a direction opposite to E. The

total generated power in an MHD generator is the integral of E * J over the

entire volume of the generator, including the inlet and exhaust. Since E - -V7 -

( A/ 2t), this can be written as:

P=- fE" J d V= fJ-V Jd

or, since V. (pJ)=pV.J +J.Vp,

P= f v. (J) d /f (p V. J d f . J d

Finally, the first integral is converted to a surface integral; and in the second

integral V J - e /t, where o e is the excess charge density, so that
e e

P= J0J. dS+ g) - - f J d/ (14.1)

2



In an MHD generator in which the flow is steady, the last two terms of

(14. 1) are zero. In the first term, the normal component of the current on all

insulator surfaces is zero. Thus, the power appears as current to the electrodes

if the potential on the different electrodes is not the same. The potential dif-

ference between electrodes is, of course, the ratio of the electrode current to

the load resistance.

In an electrodeless induction type generator, the first term of (14. 1) is

zero. Also, it is common to design it in such a way that the potential is zero.

Thus, the power delivered to the field coils comes from the last term.

The second term in (14. 1) corresponds to capacitive coupling with the flow

and corresponds to electrodeless electrohydrodynamic power generation.

14. la Electrical Conductivity in MHD Generators

To make the working fluid electrically conducting, there are three general

methods as follows:

(i) Non-Thermal Ionization

For a working fluid which is normally unionized, ionization can be

achieved by electron beams, d.c. or r.f. discharges, fission product

ionization, etc. However, the applicability of any of these methods for

MHD power generation has yet to be demonstrated. Historically, electron-

beam ionization was the first method tried with combustion gases, but

was not successful. 2 However, in pure or noble gases, where the re-

combustion rate for electrons is smaller, this method may be proved

useful.

In combustion flames, there is always a small amount of chemioniza-

tion as a result of the chemical reactions. Although this can be enhanced

somewhat by the addition of small amounts of metals, generally the degree

of ionization is insufficient to be useful for an MHD generator, and further-

more, there are usually a large proportion of negative ions present, so



that the number of free electrons present is very small. It, therefore,

appears that non-thermal ionization can be achieved only in special cases,

see Section 14.3e.

(ii) Thermal Ionization

Thermal ionization refers to thermochemical equilibrium such that

the thermal energy of the gas is an appreciable fraction of the ionization

potential of one of its constituents; then Saha's equation predicts that a

high number density of electrons will be present. Now, in ordinary flames,

which burn a fuel with an oxidizer, the flame temperature is rarely high

enough to cause appreciable thermal ionization of the products of combustion,

mainly because of the relatively high ionization potential of the products

of combustion. Fortunately, a number of elements have lower ionization

potentials, see Table 14. 1. If a small fraction of alkali metal "seed" is

added to a combustion flame, then sufficient ionization may be obtained.

Unfortunately, in flames of fossil fuels with air, the flame temperature

is too low to ionize even the "seed"; the air must be either preheated or

enriched with oxygen to obtain the required temperatures of 4000 -5000 F. 3

For working fluids which are heated by solid fuel rods in a nuclear

reactor, it is unlikely that sufficiently high temperatures for thermal ioni-

zation can be achieved in the near future; hence, techniques for non-thermal

ionization will have to be developed for this application. This problem

will be alleviated if high-temperature gaseous nuclear reactors are de-

veloped. The application of MHD generators to controlled nuclear fusion

has not been analyzed.

(iii) Liquid Metal Conductors

Even if the gas is non-conducting, there is a possibility that it may

be mixed mechanically with liquid metals as a foam or droplets. If the

liquid metal is foamed with the gas, then the entire mixture may be passed

through the generator. If the liquid metal is mixed with the working gas as

droplets. then the mixture must be expanded to accelerate the drops; that

4



is, the thermal energy of the gas must be converted into directed kinetic

energy. This directed kinetic energy must then be exchanged with the

liquid metal droplets. Next, the kinetic energy of the liquid metal drop-

lets must be converted into a pressure head in a seperator, since this

pressure head must be used to flaw the liquid metal through the generator

against the Lorentz force. This technique has not yet been demonstrated

experimentally.

14. lb MHD Generator Geometries

There are also several different MHD generator geometries presently

under consideration. The chief requirement for any geometry is that there be

a component of the gas velocity which is not parallel to the magnetic field, so

that a Faraday electric field v x B is created. This field will then cause electric

currents and fiE!ds in the plane normal to the magnetic field. The second

requirement is that there be electrodes in this plane which collect the current
are

for the electrical load. The simplest geometries for accomplishing this the

linear (together with its many variations), vortex, and radial outflow, see

Figure 14.1. These are described qualitatively below, and the linear geometry

is examined more thoroughly in the remaining sections of this chapter.

(i) Linear MHD Generator - "Duct or Channel" Geometry

The simplest MHD generator geometry is the "linear" geometry in

which the gas flows through a linear duct or channel, see Figure 14. 1.

The magnetic field is at right angles to the gas flow velocity, which induces

a Faraday electric field at right angles to both the flow velocity and magnetic

field. If suitable electrodes are placed on either side of the channel and

connected through an electrical load or resistance, then current will flow

through the gas, electrodes, and load.

In addition to the Faraday electric field, the magnetic field causes

a Hall current to flow in the direction of fluid flow; that is, the current

does not flow straight across the duct. This phenomena can be prevented

5
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by employing "segmented electrodes" which is a variation of the linear

generator. This allows a Hall electric field to develop in the flow direction.

In still another variation of the linear generator, the Faraday current is

shorted, and the Hall current is allowed to flow through the electrical load.

Other variations are also possible, see Section 14.3.

(ii) Vortex MHD Generator

In addition to the linear geometry with its many variations, there is

also interest in the vortex or spiral geometry in which the gas is intro-

duced tangentially into a cylindrical geometry, and withdrawn along the

surface of an inner coaxial cylinder, see Figure 14.1. The magnetic

field is in the axial direction, and the inner and outer cylinder are the two

electrodes. Under open circuit conditions, free-vortex flow should re-

sult; that is, the tangential velocity should be inversely proportional to
ve1oc06 I ,

the radial position. Under load, the tangential is practically constant in
A

the radial direction. When the inner cylindrical diameter is much smaller

than the outer cylinder, the gas makes several revolutions in the generator;

thus, this geometry permits a longer magnetic interaction length; or

alternately, for a given interaction length, the vortex generator has a

more compact magnetic field. On the other hand, the Hall currents tend

to flow in the tangential direction; thus, to prevent the Hall reduction in

electrical conductivity, the gas pressure must be sufficiently high that

W eT < 1 at the exit. (Note that when the inner radius is almost equal to

the outer radius, the vortex geometry is very similar to the linear geometry.)

Up until the present time, the vortex geometry has not been demonstrated

experimentally, and will not be considered in this chapter.

(iii) Radial Outflow MHD Generator

A variation of the vortex generator is one in which the gas is injected

radially outward from the inner cylinder. In this case, the Faraday current

flows tangentially and the Hall current flows radially; the latter interacts

with the magnetic field to rotate the flow, so that flow becomes a spiral

7



outward. This variation is essentially the same as the Hall geometry,

with the duct bent so that the Lorentz force caused by the Hall current is

equal to the centrifugal force in the fluid.

(iv) Other Considerations

All of the geometries considered above generate dc power. However,

by switching the magnetic field or by using a traveling magnetic field, it

may be possible to generate ac power. Although this has not yet been

demonstrated experimentally, the general principles for electrodeless ac

"induction" generators also will be covered in this chapter.

In order that the ionized fluid behave as a continuum conductor in

an MHD generator, the Debye length must be much smaller than the size

of the apparatus; otherwise, charge separation will occur.

To prevent ion slip, the magnetic field must not be so large, nor the

density so low that W Te WI TI exceeds unity. This will be explained later.

The pressure, conductivity, gas velocity, and magnetic field must be

such to make the interaction length L, defined as

p1

L -- 2 (14.2)
SuB

equal to the length of the path of the gas through the generator, where p1

is the inlet static pressure, and a, u, and B2 are average values in the

generator. This condition insures that an appreciable fraction of the inlet

enthalpy is converted into electrical energy.

Finally, if electrodes are used, the current density from the cathode

must equal or exceed the current density in the gas; otherwise, the effec-

tive electrical resistivity of the gas will be increased.

8



14.2 OPTIMUM SEEDING RATIO

As indicated in Section 14. 1, to make a combustion gas (or working fluid)

electrically conducting, it is necessary to add to it a small amount of seed

material which has a low ionization potential, see Table 14.1. There are two

ways in which this may be done, either as a pure element, or as a compound.

To determine the degree of ionization, Saha's equation may be used; thus, it

is generally necessary to determine both the depletion of electrons due to elec-

tron attachment to gas atoms, and the depletion of seed atoms due to chemical

combination with the other atoms present in the gas. This generally requires

the simultaneous solution of Saha's equation, the electron attachment, and the
4-

chemical equilibrium equations. This may be represented as follows:

S Z±:kS' + e

e + A -A-

S + B -- SB

C + B __D

etc.

where S is a seed atom, and A, B, C, D, etc., are gas molecules.

At temperatures of about 30000 K, all reactions except the first generally

can be neglected; thus, simplified equations can be obtained for the optimum

seed concentration. Generally, the upper limit for the seed concentration can

be obtained by two different sets of approximations, as follows:

14.2a Isothermal Optimum Seeding

The temperature of the mixture is assumed to be unaffected by the addition

of seed material. This is true in combustion gases if the seed percentage is

very small, or for the working fluid of a closed cycle, if the seed plus working

fluid is heated to the same uniform temperature. From Chapter V, the scalar

resistivity of the gas is given by:

9



TABLE 14. 1. MOLECULAR WEIGHTS AND IONIZATION POTENTIALS

(From 33rd Ed., Handbook of Chemistry and Physics, Chemical Rubber
Publishing Co.)

Gas Molecular Weight Ionization Potential (electron-volts)
I II

Noble Gases

Helium 4.03 24.46 54.14

Neon 2'1:83 21.47 40.9

Argon 39.4 15.68 27.76

Krypton 83.7 13.93 26.4

Xcnor 130.2 12.08 21.1

Common Gases

H 1.008 13.53 -

H2  2.016 15.6 -

N 14.008 14.48 29.47

N2  28.016 15.51 -

O 16.000 13.55 34.93

02 32.000 15.51 -

CO 28.01 14.1

CO 2  40.02 14.4

NO 30.008 9.5

Metal Vapors (Atoms)

I.ithium 6.940 5.363 75.26

Sodium 23.00 5. 12 47.06

Aluminum 26.97 5.96 18.74

Potassium 39.10 4.318 31.66

Calcium 40.8 6.09 11.82

Rubidium 85.48 4.16 27.36

Cesium 132.91 3.87 14.8

Barium 137.36 5.19 9.95

,Mercury 200.61 10.39 18.65

10



M <C> Fn Q n 1
_- e " fln es + 7 (14.3)

e L e

where nns is the number density of neutral seed atoms; Q es is their average

cross section; n is the number density of the rest of the gas atoms and Qeg is

their average cross section; 77 is the electron-ion resistivity, which from

Chapter V is:

77eI = 65.3xT-3/2 tn 1.24x104T3/2 - tnn 1/2 (14.4)

From Chapter VI, the number density of electrons for thermal ionization

of a single species is given by:

32 . T1 /JT
e=J V2 G (2rr k T/h 2 ) e (14.5)

where T, = e E .k and E. is the ionization potential. Substitution of (14.4, 14.5)

into (14.3) yields:

m < r- > 2 h2 )3/4 T I n

e e h-T- 1/2 ne e ___ ____n_

7 e 2 Grm ekT e [n Qes +  Qeg]

-3/2sFl/1

ns

--65.3 T -/n + other terms (14.6)[4 ns]

where the other terms do not depend on nns"

11



To obtain the optimum seed atom concentration, (14. 6) must be differentiated

with respect to n , and the resulting expression set equal to zero. The result
ns

is:

nns (1 + Qeg (14.7)
n (1 - 8) Qes

g e

where

8 e r2 aeI n1 n (14.8)

and where cen creV' and tnA are defined in Ch. V.

Equations (14. 7, 14. 8) must be solved iteratively, by first assuming

8 = 0, then obtaining n from (14.7). Then n is obtained from Saha's equationns e

and $ is calculated from (14.8). This value is then substituted back into (14.7)

and a new value of n is calculated, etc. The total required seed n' is the sum
ns s

of the final value of n and n
ns e

This simplified procedure works well for mixtures of pure seed and pure

noble gases, see Figure 14.2, where the conductivity of a mixture of cesium

and argon has been plotted against mixture ratio. For small mole fractions of

cesium, the electrical conductivity increases rapidly with increasing cesium

fraction. Beyond the maximum, the conductivity decreases slightly because the

cross-section of cesium is larger than that of argon. Note, however, that the

value of w T decreases monotonically, because Te depends on the averagee e e

cross-section, which increases with increasing cesium fraction. Some average

values of the cross section are shown in Table 14.2

14. 2b Isoenergetic Optir~um Seeding

Equations (14.7, 14.8) can be used with combustion gases only if the seed

atom cross-section is much larger than the average cross-section for the combus-

tion gas; for otherwise. (14.7 predicts a large fraction of seed atoms, which will

12
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TABLE 14.2. AVERAGE VALUES OF ELASTIC ELECTRON CROSS-SECTIONS
WITH VARIOUS ATOMS AND MOLECULES

Elastic Electron Temperature
Cross-Section, 103 oK

Particle in 10- 1 5 cm 2

Noble Gases 1

A 0.02 2-3.5
.11 7.7

2.38 50

He 0.54 0-30

Ne .142 0-8

Alkali Metals
2

K 1.0 2.4
CS  3.6 1.1

Combustion Gas Constituents
3

02 .31 3-4
N2  .6 3-4
H2  .85 3-4
CO .81 3-4
C02 1.2 3-4
H2 0 3.6 5
N 1.4 3-4
0 1.7 3-4

1. S. Brown, Basic Data of Plasma Physics, Wiley, 1959.
2. G. J. Mullaney and N. Dibelius, ARS Journal, 31, 1575 (1961); G. J.

Mullaney, P.H. Kydd, N. Dibelius, J. Appl. Physics, 32, 668 (1961).
3. Data Compiled by W. Chinitz, L. Eiscn, R. Gross, Am. Rocket Society

preprint 706-58, 1958.
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lower the flame temperature by dilution and therefore violates the assumption

that the gas temperature remains constant. For this latter case, the analysis

must include the effect of the seed atom dilution on the gas temperature.

To analyze this case, the following assumptions are made:

i) the percentage of seed is small and the degree of ionization is small;

ii) the seed atoms and electrons do not react chemically with the rest of

the gas. Let the initial enthalpy of the gas be h og; and the initial

enthalpy of all the added seed be h 0s. It is assumed that the seed is

added as an unionized element. Then conservation of enthalpy yields:

n., hs, + n h = n h + n h (14.9)
5? g g g og s os' 149

If the seed atoms are atomic, then the enthalpy per seed particle is:

h k T + ak T (14.10)
5 21

where y is the degree of ionization defined as:

n n
e eni+n -n t  1411)

I s s

and where electronic exitation has been neglected. The enthalpy of the combustion.1
gas is I (N + 2) k T; where N is the average degrees of freedom of the gas;

thus the ratio of specific heatsof the combustion gas is y = (N + 2)/N. Finally,

it may be assumed that the seed material has zero enthalpy when added to the

flow. The temperature of the gas, after addition of the seed material, is there-

fore given by:

_X- - pT1
T- =1(14.12)

5 _
2 Y-1

15



where $ = n /n is the mole fraction of added seed. The upper limit for $ canst g

be obtained by assuming a << 1. Then for $ << 1, (14.12) reduces to:

T = T [1-I 5 1  (14.13)

and

T 5 (y]-1)
2- T (14.14)

2,y 0

where T is the flame temperature without seed. Next, (14. 6) is differentiated

with respect to 6 using (14.14) and equated to zero, but the terms T_3/4 and
71e, may be neglected in comparison to the exponential term. The result is:

1
1 2 1 -3/2
2 Qes 2 eg

, [ I -iT
S2 2 Qj (-1) 0 (14.15)Qes + 8 2 g] 2*, T 2

Finally, if Qes is of the order of Qeg and 8 << 1, then Qes may be neglected.

Also, after the seed addition, T T if 9 is small. Then, solving (14.15) for B0

one obtains:

__o (14.16)TI

Now, in combustion gases Z Z 1. 2; thus, the final expression for the

maximum seed concentration is

T kT
Z T - e E (14.17)

T eE



As an example, consider a flame temperature of 30000K so that T is
0

about 0.25 volts; the ionization potential of cesium or potassium is about four

volts; thus, the mole fraction of pure seed should be less than 1/16 or 6%. It

therefore appears that the seed fraction for combustion gases must be small,

in fact up to the present time concentrations of only 0.1% to 4% have been con-

sidered. Of course, another factor in keeping the seed ratio small is the cost

of the seed material. Also, if it is desired to minimize the Hall parameter,

seed concentrations greater than 6% could be used, since electron cross-section

of ions is very large.

17



14.3 LOCAL INVISCID ANALYSIS OF LINEAR MHD GENERATORS

The local analysis of an MHD generator refers to the performance between

two adjacent cross-sections in the downstream direction in a linear geometry.

The advantage of a local analysis is that compressibility and area changes

generally can be neglected, if the two cross-sections are sufficiently close. It

is also usual to neglect viscous and thermal losses to the walls, in comparison
c

to the Lorentz force and electrical energy extration, respectively. This assump-
A

tion is valid if the viscous Reynolds number of the flow, based on the hydraulic

diameter, is very large, compared to the magnetic interaction parameter. The

effect of these losses is discussed in Section 14.4. In addition, the magnetic

Reynolds number in most MHD generators will be small so that the induced

magnetic field may be neglected. With these two assumptions the velocity U

is taken constant in the x direction and the magnetic field in the z direction is

taken to be constant, see Figure 14.3a. The induced electric field v x B is then

UB in the negative y direction. Then from Chapter V, ohm's law, including

the effects of ion slip, becomes:

j = + 2 2 1+8 1 eEE-8 -(E UB)]
x (+8I e) 2 + 8 e (Ey

(14.18)

1 8e)2 +8 [(1 +8i8e)(E -UB)+ 8e Ex]Y (1 + e 1 + 8 e 2 ( 1e ye ]

2

where (7 is the scalar electrical conductivity ne e 2/m, 81 = WI Tin ' and 8 =

W 1T
e ee

e e Iayeirs

In the absence of velocity or thermal boundaryA both E and E may be'Ax y
considered constant (although more generally they may be a function of x). Then
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all variables are constant across a cross -section, so that the electric field and

current in the direction of the magnetic field is zero. *

We will next use this simple model to analyze the three most common

types of linear generators: continuous electrodes, segmented electrodes, and

the Hall generator, see Figure 14. 3bo and a variation of the segmented electrode

geometry, in which the flow is helical through an annulus.

14.3a Continuous Electrodes

With the electrodes continuous along each side of the generator with a

different constant potential on each, no axial electric field can develop and

therefore E = 0. Then from (14. 18), the transverse component of the currentx

is:

Y= (1 + 8 e aB2 + 82 (1 + 8 e BI)(Ey - U B) (14.19)

The open circuit condition implies that jy = 0; thus, from (14.19), the

open circuit electric field is E (open circuit) = U B. Under short circuit condi-Y

tions, E = 0 (except for the finite electrical resistance of the electrodes andY

external connection). Thus, in general, 0 <E < U B. It is common to expressY
the electric field under load as a fraction K of the open circuit electric field;

thus, for the continuous electrode geometry:

E
K = --- (14.20)

UB

where for generation of electrical power, 0 < K < 1. Note that jy is then

negative, and the Lorentz force j x B is in the negative x direction; that is,

*Velocity boundary layers on the insulators cause the induced field v x B within

the boundary layer to be less than that at the centerline. Under these conditions,
the current in the boundary layer may be in the opposite direction as that in the
main flow and thus constitute a "leakage" current. However, if the electrical
conductivity is constant, then the average axial velocity across a cross-section
may be used instead of U.
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opposite to the flow direction. Thus, in the generator, the Lorentz force tends

to retard the flow. (If, on the other hand, the electrodes were attached to a

voltage source so that Ey > U B, that is, K > 1, then jy is positive and the

Lorentz force tends to accelerate the flow. If the polarity of the imposed voltage

is reversed so that E < 0, the Lorentz force will retard the flow; the energyY

added to the flow from the voltage source then increases the thermal energy of

the gas.)

In addition to the transverse component of the electric current, there is

also a component in the downstream direction given by:

8 (1-K) UB
x =  8e (14.21)

x ( + 1e + 8 2
e

where use has been made of (14.20). Thus, the current, as it flows across the

generator, also tends to flow downstream. Actually, it is the current in the

downstream direction (14.21) which is responsible for the Lorentz force on the

gas. This may be seen by simplifying the problem somewhat: let W n = I 0'

so that the average ion motion is exactly equal to the gas velocity U1 . The

current given by (14.21) is the total downstream current; if the average ion

velocity is equal to the gas velocity, then with 8[ = 0 (14.21) is also the expres-

sion for the electron conduction current relative to the gas motion, since the

gas is electrically neutral. Thus, the diffusion velocity of the electrons is in

the downstream direction relative to the gas, that is:

Ve= o we Te (1-K) UB (14.22)
x e ee

The drag force exerted on the gas by the electrons is Fx = neme /Te

with the use of (14.22) this becomes: x

F 2 - (1-K) UB (14.23)x I+821+8

e
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This is identical to the Lorentz force j yB, calculated from (14.19) when 61 is

neglected.

(i) Power Density, Continuous Electrodes

The power generated per unit volume is P = - E j which becomes

just jy Ey since Ex Z 0. From (14.19), (14.20), this becomes:

,aK(1-K)U2 B 2 (+

P =2 2 (14.24)

(1 +

Equation 14. 24 can also be written as:

2 8 2(1+8 2 A _
ne me U K (1-K) e e Ae (

P e _A (14.25)

Re 2 1I 2 2(1+9 -) +8
e

where M I' are the electron and ion mobilities e T I /m e 'e e

respectively. From (14. 25) it is also obvious that 0 < K < 1 for power

generation. The coefficient of(14.25)(n me U2 V )has a simple interpre-

tation: consider that after each collision with a heavy particle the electron

acquires the gas velocity U in the downstream direction. But then the
the

magnetic field turns electron velocity in the +y direction parallel the

electric field, so that its kinetic energy is transformed into potential

energy. If the electron is then hit again by a heavy particle, it again

acquires a velocity U in the downstream direction. The rate at which an

electron acquires kinetic energy from the gas is thus approximately
m U2 v ); the total rate at which all electrons acquire energy frome e

the gas is therefore Z I n m Uyt"2e e Uye"

This same result can be obtained from a different point of view:

between collisions, the magnetic field turns an electron in the y-direction
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a distance of order of magnitude equal to the Larmor radius, which may

be taken as approximately U/w , thereby acquiring a potential energye

due to the stationary electric field equal to EU/w . The total rate ate

which the electrons acquire potential energy is thenn ev EU/wI Since

E X U B, and w = eB/me , this rate is again equal to(n e me U ') which

agrees with the previous argument.

The factor on the right side of (14. 25) represents the effects of the

Hall reduction in electrical conductivity and ion slip for this geometry,

and has two asymptotes. The first asymptote is obtained by taking A I or

equivalently i or 91 equal to zero, which is equivalent to stating that the
1 2

ion velocity is equal to the gas velocity. This factor then becomes r /2 e

(1 + 8e2 ). Thus, for a given value of r , the power P initially increases

quadratically with the magnetic field, since 8 - s B. This is shown in
e e

Figure 14.4. As the magnetic field is increased further, the first

asymptote is reached 8 2/(1 + 8 2)-- 1. Thus, the maximum energye e ~
transfer or power generation due to the electrons is n m U modified,

(e e

of course, by the loading factor term K (1-K). In Figure 14.4 the inflec-

tion point near unity represents this first asymptote. Since magnets gen-

erally consume power and are expensive or heavy, it is desirable to

operate at a point somewhat below this point; suppose the power level is
U2

set at P - /n m U K (1-K) equal to 80% of the first asymptote, then2 e2e
S2/(1 + e ) = 0.8, so that P = J5= 2.24. Thus, a magnetic field whiche e e

corresponds to a value of the Hall parameter Sreaier thud two will not lead to

substantially greater power generation by electrons.

(ii) Magnetic Interaction Length

With PI = 0, the interaction length can be written in terms of the

electron mean free path as follows:

L = A-P ( e nn__ 1e (14.26)
GUB 2  8 2 ne e

e

where Xis the gas Mach number.
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Again, as 9 2 is increased from zero, the interaction length decreasese
and then becomes asymptotic. Since the degree of ionization will be of

-2 -4 -2
the order of 10 to 10 , the square root of the mass ratio is about 10

and the Mach number is of order of magnitude unity, the interaction

length of the generator is 104 to 106 electron mean-free paths, multiplied
2)/B 2 For constant electron mean-free path, increasing theby (1 + 8e  e .Frcntn lcrnma

magnetic field decreases the interaction length, but values of 8 beyond
e

about two will not lead to any appreciable further reduction. On the other

hand, with the magnetic field constant, if 8 is increased by decreasinge

the gas pressure, then the electron mean-free path will increase, which

increases the interaction length. This may be seen by substitution of

X= m < C > 8 /e B into (14. 26). The interaction length then varies ase e e e

(1 + --58e which has a minimum at Be = 1.

With 8 1 non-zero, (14.25) predicts a second asymptote when 8e > AeI4

for the right hand factor, equal to the mobility ratios $A/ 1 which is

generally much greater than unity. This is shown on the right side of

Figure 14.4 for very large values of w eT . The power extraction is then2 e e

of the order of P . nI I U /T In, which shows that for very large values

of W% T el the positive ions are responsible for the power generation. Be-

cause the mobilities vary roughly as the inverse square root of the mass

ratio, the asymptotic interaction length for Be large becomes L = n X e/n eL,

However, values of S larger than 103 cannot be obtained except by reducinge

the pressure, which again increases the interaction length because of the

dependence on the mean-free path. For example, consider Ie/I/a = 200:

from Figure 14.4, values of W eT greater than 2 x 104 are required to

approach the asymptote, while the first asymptote is reached when W T > 2.
4 e e

Thus, if one lowers the density to obtain 2 x 10 , then the electron mean-

4
free path has been increased by a factor of 10 , so that the interaction

length is increased by two orders of magnitude. It, therefore, appears

unlikely that an MHD generator can be designed to utilize the ion current

with continuous electrodes.
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(iii) Efficiency, Continuous Electrodes

From (14.24), it is obvious that the power generation density is a
1

maximum when K = - which obviously corresponds to matched impedance:
2

that is, when the load resistance is equal to the generator internal resistance.

However, for some applications, it may not be desirable to operate at

maximum power density, but instead, closer to maximum efficiency. For

the purpose of a local analysis, a local conversion efficiency may be de-

fined as the ratio of the generated power to the flow work which is required

to overcome the Lorentz force, or:

L - (14.27)

In the present geometry, the denominator of (14.27) is U jy B, while the

numerator is Ey j y; thus, the local efficiency for this geometry is E yU B =K,

from (14.20).

The local efficiency, as defined by (14. 27), is also equal to the local

adiabatic or polytropic efficiency (also called the "stage" efficiency) when

-Y (1-K) is small compared to unity, see Section 14.4. Thus, if a
2

high polytropic efficiency is required, it is necessary to operate at values

of K near unity.

Since the load voltage is KUBh, and the load current per unit length of

generator is a (1-K) UBb where a is the "effective" electrical conductivity;e e

the external load resistance per unit length of generator is, therefore,

_V Kh _K

R - Kh -=K R.(1.8
L J (l-K)C b 1-K 1 (14.28)e

where R. is the effective internal resistance of the generator, h/e b) see ij. it.3,.

Solving (14.28) for the value of K, one obtains:

K R/R (14.29)
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which, for this geometry is also equal to the conversion efficiency. One

therefore obtains the familiar result that the conversion efficiency in-

creases as the ratio of external to internal load increases.

(iv) Voltage Control, Continuous Electrodes

In general, the continuous electrode geometry will be operated such

that 1 K - 1; since the power generated is a parabolic function of K,2
this means that operation will be on the falling side, see Figure 14.5.

This means that as the generator is unloaded (load resistance increases)

the power to the remaining load decreases although the load voltage in-

creases slightly. If the magnetic field is kept constant, then the effective

electrical conductivity and therefore R. will remain constant, so that the1

local conversion efficiency is still given by (14. 29).

If it is desired to keep the load voltage constant as the load is changed,

this may be accomplished by varying the magnetic field, but this will

change the internal resistance. For example, if the load resistance is

increased, the load voltage will increase; to keep the load voltage constant,

the magnetic field is then decreased. However, this reduces the Hall

parameter e and therefore increases the effective electrical conductivity,e

thereby simultaneously decreasing the internal resistance. One, therefore,

expects that the local efficiency will increase more than if the magnetic

field were held constant. It is easily shown that the load parameter and,

hence, efficiency is given by:

/2 _ '2 2
Z + iZ- 4(1 +Z) 0 K 0

K = 0 0 (14.30)
2 (1 + Z)

where . is the initial value of Fe; 8 was assumed to be zero, K is theo e' o

initial value of the loading factor, and Z is defined as:

K 2)H

z 0 (14-F) L (14.31)1- K o RL

0
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where RL is the new load resistance, and RLo was the initial value of the

load. For example, consider Ko = 0. 6, RL /Rio 1.5, =2. If the

load resistance is doubled, while the magnetic field is decreased to keep

the load voltage constant, then K becomes 0. 83. On the other hand, if

the magnetic field were kept constant, doubling the load would only increase

the value of K to 0.75.

In addition to the Lorentz force, which acts to retard the flow, there

is a component of the Lorentz force in the direction of the cathode which

is the product of e/(1 + 8 e I ) and the retarding Lorentz force. This is

balanced by a transverse pressure gradient; if the magnetic interaction

parameter, based on the channel width is large, this transverse pressure

gradient codld become quite large, and would alter the density or tempera-

ture across a cross-section.

14.3b Segmented Electrodes

In the previous section, it was sjiown that with increasing magnetic field,

the generated power density due to electrons becomes asymptotic to[n me

K (1-K) veJ because of the Hall reduction in electrical conductivity in the direc-

tion of the electric field. To remedy this situation, the segmented electrode

generator has been devised 5 ' 6 in which each opposite pair of electrodes is

connected to a single load, see Figure 14.3. In this arrangement, the current
9 0s

flow is essentially transverse to the flow, and no net Hall current exists in the
downstream direction. Since the gas is electrically neutral, this means, of

course, that the electron and ion velocities in the downstream direction are equal

to each other and are also equal to the gas velocity in the downstream direction,

in the absence of ion slip.

With the Hall current jx equal to zero, (14. 18) predicts that an electric

field will develop in the axial direction given by

e
Exei (Ey U 0B) (14.32)
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so that the current in the y direction becomes:

je a (Ey - UB) (14.33)

As in the previous section, the open circuit voltage corresponding to jy = 0

is UB; we therefore take the electric field under load as KUB. The Lorentz

force I x B now acts only in the negative x direction so that it acts only to re-

tard the flow. This force is exerted purely on the ions and not the electrons,

as shown in the following argument. The electron velocity with respect to the

generator may be resolved into two parts, one due to the electron drift motion

E x B and the other in the lownstream direction due to collisions with the gas, v
C

v =- +iv (14.34)
- e B2 e c

see Figure 14.6. In the y-direction, (14.34) becomes with the use of (14. 32):

v = -E xB = (l-K) W U/(1e T e) (14.35)
y

in agreement with (14.33). The electron velocity in the downstreamdirection is equal

to the ion velocity, for 8 << 1 is the gas velocity; thus, from (14.34):
A eI

v E B- v
e y ex c

or

U = KU + v
e (14.36)c
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so that the velocity increment in the downstream direction is v = (1-K) U.e
Now, the total force on electrons in the x direction is given by: C

F e= -ne(Ex +v B) (14.37)
x y

Substitution of E from (14.32) (with B e neglected) and vey from (14.35) shows

that the net axial force on the electrons is zero. On the other hand, the force

on ions* in the x direction is FIX = neeEx; use of (14.32) then yields FIX =

ne B (K-l) UB/(1 + B I) which is identical to j x B as obtained from (14.33).e el,

(i) Power Density and Efficiency, Segmented Electrodes

The power density is -E • j E j ,or:
y y

p = K (1-K) aU
2 B 2

e+

n U2  (l-K) e2

e e e (14.38)
e 1 + I /M/_

e le

As in the case of continuous electrodes, the power density initially increases

quadratically with increasing magnetic field (since Be e Te B/me ); and the

last factor of (14. 38) becomes asymptotic to /J e/i , see Figure 14.4.

However, for intermediate values of Be' no first asymptote appears in the

power density as was the case for continuous electrodes. Thus, for

1 < 8e < (1eII) the generated power of the segmented electrode geometry

greatly exceeds that for the continuous electrode geometry. The generated

power comes from the ions for this geometry; in fact, the electrons actually

*It has been assumed that all ions are positively charged. If some have negative

charges, the force is e (ni + - nf-) Ex. But ni + - nI - = ne in an electrically neutral
gas, therefore, this same expression applies.
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decrease the power generation. The power is obtained from the ions by

their motion against the x-component of the electric field:

PI = -n eeUEx = n e (1-K) U2B/(1+6 e) (14.39)

The power generated by the electrons is:

P =n ev .E
e e _e -

Now, from (14.34) the electron velocity consists of two parts: E x B/B 2

2
andivec. The drift velocity E x B/B generates zero power since E x

B • E = 0; while the part due to v in the x-direction yields
e

c

Pe = -ne e (1 - K)2 U2 e B/(1 + 6e) (14.40)

so that the electrons actually consume power; that is, power must be

expended in order for the electrons to move with the gas velocity U. The

sum of (14.39), (14.40) is identical to that given by (14.38).

The local efficiency is still equal to K, since ?L = Ey j y/UBj Y. Thus,

the increase in power density has been obtained with no sacrifice in effi-

ciency. Since the power density is still a maximum when K = , this

geometry will also be operated on the downward side of the power curve,

see Figure 14.5.

7
14.3c Hall Generator

When the electrodes are segmented it was shown in the previous section

that an electric field develops in the flow direction, see (14.32). This electric

field is maximum when the opposite electrodes are short-circuited; that is, when
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E = 0. If the electrode pair at the inlet is connected through a load to the pairY

at the exit, a current should then flow through the load. With E = 0, theY

current density in the +x direction is obtained from (14. 18):

Jx 2(+2 ()2 + + e 1 I E x + e U B  (14.41)
(1+ e +$e

When open-circuited, the axial electric field is - $e UB/(1 + e I) ; under load the

axial electric field will be some fraction K of this value, E = - 8 KUB/(1 + 8 8i),
14x e eI

so that: a e (1-K UB
j (14.42)B

Jx = 2 21.2

(1 + 8ePI)2 + 82

Note that the definition of K is different than K for the continuous and segmented

electrode geometry.

(i) Power Density Hall Generator

The generated power density is:

P =-Ex jx

K(1-K) a U2B
14 14 e

(1+ e I) [(1 ± I)2 + e2]

U2

n m U K(1-K) 4e

T e 1+ 6 2  1 I I+ e 2 AI 2  + 2] 2

(Iee ee e A ee

(14.43)

In this geometry, as the magnetic field is increased from zero, the power

increases as the fourth power of the magnetic field, in contrast to the
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quadratic dependence of the continuous and segmented electrode geometries.

An asymptote is reached when B > /11I, equal to (Pe/e1i)3 e- 2 , which

is considerably smaller than the asymptote of e /AI obtained in the con-

tinuous and segmented geometry generators. However, for 2 < B <1/2 e

(Ae e1 It ) 1/2, the power density approaches that of the segmented electrode

geometry.

The retarding Lorentz force, jy B becomes:

2 1 + B' 2K-aUBe H
F = 1•B +B (14.44)x I+ H + 2

e

where B' is an effective Hall parameter for electrons defined as:
e

B
B, - e (14.45)
e I+B B

Note that the retarding Lorentz force is a minimum when the load is short-

circuited; that is, when K = 0. This is in sharp contrast to the previous

geometry, where the retarding force is a maximum when short-circuited.

This effect is again due to the force on the ions: in the segmented electrode

generator, the axial electric field is a maximum when short-circuited; in

the Hall geometry when K = 0, there is no axial electric field and there-

fore no net axial force on the ions. This may be seen as follows: the

axial force on the ions is (neglecting ion slip):

FIx = nieE = - n e B UBK (14.46)x e e H

The electron current relative to the gas is:

jex - G 2 l 2 Ex + PeUB (14.47)

e
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so that the electron velocity relative to the gas is

-eT6 UB
e e

Ve e (1 - K) (14.48)x (1+6 )m 
e e

The motion of the electrons relative to the gas exert a friction drag on the

gas given by:

e -e ne UB
x e e

S(1 - K) (14.49)g x T + 2

e

The sum of (14.46, 14.49) then yields the total force on the gas heavy

particles. This expression is identical to the expression (14.44), neglect-

ing ion slip.

(ii) Efficiency Hall Generator

The local efficiency of the Hall generator is the ratio of the power (14.43)

to the flow work U F when F is given by (14.44). Thus,x x

6' 2 K(1-K)
- e H (14.50)

L 1 ,2K1+6'2K H

e

2 2For small values of I , the efficiency is proportional to B' and is
le 2 e

maximum when K = . For large values of B, , the efficiency becomes:e

2,--L>---- 7 (1 - K), (14.51)
e H

that is, the efficiency is a maximum when K is small, that is, when closeH

to short-circuited. For arbitrary values of $' , as K is increased, the
e
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efficiency at first increases, then decreases, as shown in Figure 14. 7.

Thus, for any given value, there is a value of K which yields the maximumm

efficiency. This value is obtained by differentiation of (14.50) with respect

to K; the result is:

,2K 2
+ 2K 1 0 (14.52)

e m m

which yields

K = 2 [ 1 -] (14.53)m e 7

Also,,from (14.52):

1-2 K
m (14.54)

e 2K
m

Substitution of (14.54) into (14.50) yields ?I in terms of K :L m
m

77 = 1-2K (14.55)m m

Substitution of K from (14. 55) into (14. 54) yields an alternate formm

for the maximum local efficiency:

m ,2 (14.56)

(1-_ L  )2 e

m

Thus, ' must be large in order for the local efficiency to be close to unity.
e

Figure 14.8 shows the maximum efficiency as a function of E"' given by
e
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(14.56). Note, however, that as the magnetic field is increased from

zero, that is, as 0 is increased, B' first increases, reaches a maximum,
e e

and then decreases. The maximum value of is obtained by settinge 2
equal to zero the derivative with respect to e of B /(1 + e 24 ei). The

e e e el
result is:

W  = (14.57)
max

Thus, if the mobility ratio is 100, the maximum value of 0' is 10 and the
e

maximum local efficiency is slightly over 80%.

(iii) Comparison With Segmented Electrodes

It was shown in the previous section that the segmented electrode

generator has a higher power density than the continuous electrode generator

for 1 < e < eP I , for the same value of local efficiency. It is therefore

desirable to compare the power densities of the Hall generator to that of

the segmented electrode generator for the same values of ? L' From

(14.38, 14.43),

P (L) = 2 (14.58)
Seg 7L (1 - 7L) (1 + $e 2)

where K = K (7 ), given by (14.50). This ratio is shown in Figure 14.9
1K L

as a function of the parameter B ' It is seen that for the same efficiency,e"

the power density of the Hall generator approaches that of the segmented

electrode generator. Of course, the latter generator can be operated

at any local efficiency, while the maximum efficiency of the Hall generator

depends on the value of 0e ; this maximum efficiency is shown as the dashed

line in Figure 14.9.
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Since the Hall current is allowed to flow, a Lorentz force will exist

in the -y direction, as in the case of continuous electrodes. The ratio of

this transverse force to the retarding Lorentz force is j x/j y, or

F t (1-K)
F
_y e -I#1

F 1 + ' K
x eli

which is of order of magnitude unity, for e > 1; this must be balanced bye

a pressure gradient of the gas normal to the plane of the electrodes similar

to continuous electrodes.

(iv) Voltage Control, Hall Generator

1
Since the maximum power density is developed when K= , see

" 2t

(14.43), and the efficiency is a maximum when K < (see Figure 14.7),
H 2

the Hall generator will generally be operated on the rising part of the power

curve, see Figure 14.5. This means that if the generator load consists of

resistances inparallel, as the load is reduced by removing resistances,

the total load resistance will increase, increasing the load voltage. If

the initial point of operation was K < -1 then the new value of the loading
1 1

factor may still be less than I so that the power to the remaining load is

now greater than the original power to all resistances. Morever, as KH

increases, the efficiency decreases, in contrast to the previous two

geometries. This may be seen as follows: The load voltage is given by

K $' UBL, where L is the generator length; the load current is T h b S UB.
ti e r I e

(1-K) (1 + e + $e2] -: thus, the load resistance R V/I, is given

by

R =R. K (14.59)
L il4K
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where the internal resistance of the Hall generator is defined as:

L [I+ e~)2+ e 2 ]

R. abh1+ (14.60)I h( + elI

Solving (14.59) for K, one obtains:

1
K - (14.61)

H R1
RL

For K R > R thus, the external resistance must be less than

Ie 2' i L'
the internal resistance to obtain good local efficiencies. This is also in

contrast to the previous cases. Thus, as R increases, K will also in-
L

crease, and 7L will decrease. To remedy this situation, the load resis-

tances can be connected in series and resistances can be removed from the

circuit by shunting them, or the magnetic field can be reduced to keep the

load voltage constant, if the load resistances are in parallel. The analysis

of the voltage control is simplified if the ion slip is neglected. Then, to

keep the axial electric field constant, the magnetic field must be varied

so that

2 Ko (14.62)

H

where K , B are the initial or design values of the loading factor and

magnetic field, respectively. From (14.59, 14.60), the load resistance

is given by:

L (1 + e2 ) K

R = e (14.63)
L bh(1-4K)
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and the design load is

R L 0 0 (14.64)
L abh (1-Ko)

The ratio of off-design load resistance to load resistance is obtained by

dividing (14.63) by (14.64). Thus, the off-design load factor K is given by:

R 1- K )
RL K (14.65)

o I-K 2

where use has been made of $ 2K 2 K. The off-design efficiency is
e o 0 A

given by:

7= 1 - 1-Kw (14.66)
1 1Kt. -+K ±- 1
2 2 K

e o o

For example, consider a Hall generator which has been designed for =2 o
5, K = 0.2, 77 =- . Suppose the load resistance is increased by 38.5%,

o L 3
and the magnetic field is reduced to keep the load voltage constant. From

(14. 65) the off-design value of K becomes 0.4; from ( 14. 62), the magnetic

field and P are reduced by 0. 707, and the efficiency drops to 0.5, frome
(14.66). If the magnetic field had been kept constant while the load resis-

tance was increased by the same amount, the load factor would have in-

creased to 0. 53, and the efficiency would have been reduced to 0. 436.
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(v) Annular Hall Generator

Since there is no electric field in the y-direction, it is possible to

"Wrap" this geometry into a cylindrical annulus; the axial coordinate is

then x; the y coordinate becomes the circumferential coordinate 0, and

the z-coordinate becomes the radial coordinate, see Figure 14. 10. In

this device, the flow is introduced in the axial direction and the magnetic

field is in the radial direction. In practice, it is not possible to make

radial magnetic fields which have large axial lengths; it is necessary to

periodically reverse the direction of the radial magnetic field, see Reference

2 for one method of accomplishing this. However, the power generation or

efficiency does not depend on the direction of the radial magnetic field; in

fact, it may be shown that the power density depends only on the average of

the square of the magnetic field.

On the other hand, the circumferential Lorentz force on the gas, which

is caused by the axial current jx, does depend on the direction of the radial

magnetic field. If the radial magnetic field were to be in the same direc-

tion, this circumferential force would cause the gas to rotate; that is, the

flow would become helical. But if the direction of the radial magnetic

field were alternated, then the direction of the circumferential force would

also alternate in the x direction. This would tend to minimize the rotation

of the gas.

For this geometry, the local performance is given by the previous

formula, if the annulus is narrow.

14.3d Series-Segmented and Helical Flow Generators

In the preceding sections it has been shown that the segmented electrode

has the combination of the highest power density and highest efficiency of the three

configurations which have been discussed; however, it suffers from the require-

ment of multiple loads. This problem can be relieved by connecting the electrodes

which are at the same potential in series, see Figure 14. 11. The lines of constant
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Figure 14. 10. Schematic Diagram of Annular Hall Generator
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SEGMENTED ELECTRODES

L 1

di

Figure 14.11. Connection Diagram For the Series - SegmenteElectrode Geometry. tan e = - =
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potential are normal to the electric field shown in Figure 14. 6. The require-

ment for connection of electrodes is that A Py P , or E h =-E d, whichy y x

from (14.32) becomes:

d K
h (1-K) B, (14.67)

e

The connections shown in Figure 14. 11 are for a single load; if additional

electrodes are inserted between those shown and connected in series, two loads

may be used, and so forth.

(i) Maximum Power Density

Now it is natural to inquire whether there is some other linear geometry

which can have a higher power density than the three geometries which have

been considered for a given efficiency. To determine this, let

E = K UB
X 1

(14.68)
E* = K UB

y 2

so thatE =UB+E* (K + 1) U B. The current can be obtained in terms

of K1 , K2 from (14.18), and the power becomes:

2

P L~ yB= =?7UB7 2  [ B 7K 2B K1 ] (14.69)L1 + p (1 +W e' K1
e I) e

For 77L constant, differentiation of(14. 69) withrespect to K2 shows that the

power density is a maximum when

dK 1  1

d K 8-  (14.70)
2 e
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Now, the efficiency is also given by (-Exj x - E yj y)/jy UB, or:

K2 - K(K + K1 K 2 ( 2 +)+e K1
7 2L K 2 +)' K e (14.71)

2 e 1

For ?7L constant, differentiation of (14.71) yields:

d K d K
2K 1 = 2 e (1-7L 2K 2 + 7 (14.72)

Finally, substitution of K 1 from (14.71) and(d KI/d K2 )from (14.70) yields:

K2 = 77L- 1 (14.73)

Substitution of this value of K2 into (14. 71) yields the following value of KI:

K 1  f' (7 L - 1) = $' K (14.74)
1 e L e 2

Use of (14. 68) then shows that

E 8' E* (14.75)
x e y

so that the axial current jx is zero, which is precisely the condition in the

segmented electrode geometry. Thus, for a linear generator, the segmented

electrode geometry yields the highest power density for any given efficiency.

This condition may also be interpreted as follows: the highest power density

and efficiency is obtained when the Lorentz force exactly opposes the gas

velocity.
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(ii) Load Variation - Series Segmented

The series-segmented geometry is designed for just one loading, since

the electrode pitch d is selected on the basis of the loading factor K. Thus,

once K is selected,

-E x h
E - (14.76)E d

y

remains constant regardless of the loading, where

(-1) e~$ (14.77)

and 17 is the local efficiency ?L for the design load, from (14.67). For an

off-design load, E = K UB, so that E = - C K UB, and the load voltage isy x

V = K UBh (1 + L/d) Z K UBU L (14.78)

where L is the generator length. The load current is the sum of the current

to an electrode plus the axial current:

I =( *yd jxh)6 (14.79)

From (14.18, 14.76),

J C 2 B K - 1 -[K 1 2 1.7) K (14.80)
e I)  e

This may also be shown by using I = P/V, where V is given by (14.78);
P = -(ExjX + E)h Lb; and use of (14.76).
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a UB ' (-K+ 7)
x , 2 0 (14.81)

(I + 0eI' (I+ ) 0

so that the load current is:

i' UBdb I-K ,0 2 (110 K- 1-2 ( 7]

eI + Oe (i+0el) e o 7

(14.82)

The value of K which corresponds to open circuit is obtained by setting the

bracket in (14.82) to zero:

1-77 0 ' 2

K = 1 ( (14.83)
o.c. 2(1-7) 2

which can be greater than unity. In fact, for 0' 2 >> 1, the open circuite
value of Koc = 77 /(1-770). Thus, if the design value of 770 is greater than

1/2, K is greater than unity. The power generated is given by the product
oc

of (14.78) and (14.82); the ratio of the off-design power to the design power (I4.3

is given by:

P K27 +

0 (1 + -2 -770) [
e 0 0

+ (K-i) K 7 7 ) 4 (a)
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For ' 2>> 1, this reduces toe

P =K 17

P 2 (b)

o1

This has a maximum when K is equal to 17 /(1-1), that is, half the open-

circuit voltage; this maximum is

p 1- 1(c)
P 4 77 (1-770)

Since [17 (1-77)] -1 is always greater than 4, the maximum power is

always greater than the design power. Now, if 17 > -1 , the operating point
o 2

will always be less than half the open-circuit voltage. Thus, the design

point will be on the rising part of the power curve, see Figure 14.5. In

this respect, the series-segmented electrode generator resembles the Hall

generator. If, however, the design value of 77 is less than -' ,the design

point lies on the falling side of the power curve.

The load resistance is given by the ratio of the load voltage to the cur-

rent; e design value correton&in. +o Y'-=o ks .ien 1 j

1 o) 0_ L '
1- ( 7 7 oL '2(1 + Bei "----- ( +(e ) (d)

RL = bh e e I) --abdo

while the off-design load is related to the load factor K by:

K(1+' -2)

RL e

RL ,-2 I-K \ I-"o (e)o 1+e 77o I-1 - - -Io°K

e T10\1\77 K
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For 0' 2 >, the reciprocal of (e) becomes:
e

RL
- (f)

- = -+1--I
R K 77L o

which shows that as the load resistance increases, the value of K increases.

The efficiency is the ratio of the power to jy UB, or:

K ,2 rK - 7

77L =K - +7 K1 e 1 (14.84)

For large values of ' 2 this becomes:
e

=1 - K (14.85)
0

Thus, as the load resistance increases, the load voltage will increase, and

the efficiency will decrease. This behavior is also similar to that of the

Hall generator.

(iii) Helical Flow Generator

It was shown in the preceding section that the series-segmented electrode

geometry has the advantage of the high efficiency and power density of the

segmented electrode geometry, but has only two terminals for a single load.

In comparison to the annular Hall geometry, it is mechanically complex

because of the necessity for having multiple electrodes and connections.

Consider the electrode arrangement shown in Figure 14. 11, where the

electrodes are along constant potential lines. If the electrodes were re-

arranged, as shown in Figure 14.12, the power density and performance
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Figure 14. 12. Rearrangement of Series - Segmented lectrode Geometry
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would be the same as for Figure 14. 11; that is, the total power and load

voltage are identical. Note that the ionized gas must pass through the line

of electrodes C-D. Now, this geometry is symmetrical about the line A-A.

Thus, the performance is not changed if it is wrapped into an annulus with

points C and C' meeting, and points D and D' also meeting. Since the

equipotential lines now meet, the electrodes at P 1-(P3 may be dispensed

with; only the electrodes at P and P4 are now needed for connection to the4a .

external load. This new geometry is shown in Figure 14. 13; it is essen-

tially the same as the annular Hall generator, except that now the gas must

be admitted with a circumferential velocity ve, such that v6 /u x = d/h, or:

ve 770
u tan (1-7°e (14.86)

x oe

which can be accomplished by inlet turning vanes. The axial electric field

is:

u B?? (1+tan2 ) 6' (1 +tan 2 ) u B
E x o e x

x tan6  1 + tan 6  (14.87)
e

while the axial electric current density is given by:

-(1-77) u B tan e

x =  1+ + (14.88)

The efficiency has been taken as 77 in (14.86 - 14.88), where the efficiency

is now defined as:

7x u X B) E (14.89)u. (jxB)
0 ( x Y_ (U x jy yx ) B
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RL

Figure 14. 13. Helical Flow Generator
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The power density is obviously E ix' which is obtained from (14. 87, 14.88),

while (14. 89) may be used to obtain j . The load voltage is - E xL and the

load current is the product of jx and the annular cross-sectional area.

The load resistance is obviously equal to the ratio of load voltage to load

current.

Although the flow is helical, the Lorentz force is parallel to the stream-

lines, so that the Lorentz force does not change the ratio of Ve/ux, that is,

the helix angle 0 will remain constant. The helix angle is determined by

the selected efficiency ?0 which in turn is determined by the load resistance.o

If the load resistance is changed, the current and voltage will change as

described in the previous section; but also, the direction of the Lorentz

force will be different than the flow helix angle e. This can be remedied

by changing the turning angle of the inlet stator vanes so that tan L =L

7L /01 (1-7), where e is the new helix angle. Also, voltage control
L e L) L

may be obtained by varying the magnetic field which in turn changes '
e

and 0 again.

The helical flow geometry has two possible disadvantages: first, the

helical flow will cause a radial pressure gradient, which if sufficiently

large will alter the performance. Also, to keep the helix angle small,

large values of ' are necessary. Second, the radial magnetic field must
e

be in the same direction; switching the direction of the magnetic field re-

verses the required helix angle. If it is necessary to reverse the direction

of the radial magnetic field in the downstream direction as in the annular

Hall geometry, then additional turning vanes are required at each point

where the magnetic field is reversed. It will not be necessary to reverse

the magnetic field if the generator length L is sufficiently short, which re-

quires a large magnetic interaction parameter. It therefore appears that

the helical flow generator is most applicable to large values of both the

Hall parameter and magnetic interaction parameter.
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14. 3e Magnetically Induced Ionization

Whenever an electric current flows in a gas, the "temperature" of the

charge carriers, refered to the mass-average velocity, will be higher than the

uncharged particles. This temperature depends on the loss of energy of the

charge carrier when it suffers a collision with an uncharged particle; in Chapter

V it was shown that this effect is most pronounced in light charge carriers,

that is, electrons. As the electrons enter the geinerator, their temperature is

changed in accordance with the electron energy equation as follows:

)T e3m
51 ku-e" * e 8 nV k -W)-nkT2 e eTx M e e e g e I

(14.90)

where T is the gas temperature, n is the local ionization or deionization rate,g e

and TI is the ionization temperature equal to e E /k, where EI is the ionization

potential.

From (14.90), the relaxation length to change the electron temperature

5 M e 14.91)

s te e < p

whereX is the electron mean-free path, andK r >is the mean thermal speede < >M

of the heavy particles. Since the electron velocity in the streamwise direction

is about the same as the gas, the factor at ue/< ( :>Is approximately equal to

the gas Mach number; thus, (14.91) becomes:

Sz7Ae (14.92)X Tm - e

e
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If ?Th- 6 1, then (14.92) shows that the relaxation length is of the order of

102 - 103 mean-free paths, which in an MHD generator is much shorter than

the magnetic interaction length given by (14. 26). If the asymptotic temperature

is considerably higher than the gas temperature, then considerable additional

ionization may occur, which makes ii positive, and decreases the rate of in-e-

crease of the electron temperature somewhat.

The asymptotic electron temperature is obtained by setting the first and

second term on the right side of (14.90) equal to zero. This tacitly assumes

that the relaxation length (14.92) is much less than the length over which the gas

temperature or density changes appreciably, that is, the magnetic interaction

length, Equation (14.26). The relaxation length for ionization is of the order of

-4 -2ne/n of the interaction length; since ne/n is of the order of 10 to 10 , the
assumption appears to be valid. Note also that j • E* is always positive, so

that the electron temperature is always greater than the gas temperature.

To obtain the asymptotic electron temperature, the relation between je

and E* must be specified. Since this relation depends on the generator geometry,

this will be analyzed for the three basic geometry shapes. Note that the electron

conduction current is given by:

a2 [*- " E* x B (14.93)

e

2
where it has been assumed that E*. B =0, and where a= n e /m v Thus,

_ e e e

j.E* I E*1 (14.94)
.4e 2

e

Thus, the electron heating depends only on the magnitude of the electric field.

(j) Continuous Electrodes

In this geometry, the only component of the electric field is E*
y

(K-l) U B. The component of the electron current in this direction is
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Jey = CY E*/(l + 0e2). Equating the sum of the first two terms on the right

side of (14.90) to zero, substitution of E* and j , and solving for the

electron temperature, one obtains: Y

T e (1K)2  2/2
S + 2+) (14.95)

g 35(1+B e )

wherefk is the Mach number of the flow. Now, it is more convenient to

express the electron temperature in terms of the stagnation temperature

of the flow, given by:

T2T 1 + 
(14.96)

T 2
g

The ratio of the electron temperature to the local stagnation temperature

is therefore:

'Y (1-K) 2 e 2 O2 2

1+ e~
Te 365 (1 + e2)

T - Y1V'1T 2  (14.97)

In order for the electron temperature of the gas to exceed the local stagna-

tion temperature, it is necessary for the coefficient of 97 2 in the numerator
2of (14.97) to exceed the coefficient of in the denominator; that is

deEIne~d 6

3 - (1-K) ( -() 4) (14.98)
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must exceed unity. To make 0 large, it is necessary for e to be largee
and 6 small. In addition, the generator should be close to short-circuited

so that K - 0. Under these conditions, the maximum value of 0 is 5/3.

Thus, if the Mach of the flow is large, T /T o-> 5/3.e o

Although this electron temperature may cause additional ionization,

it is not practical to operate an MHD generator at short circuit. Note

also that 6 must be small for appreciable electron heating.

From Chapter V, values of 6 close to unity may be possible in monatomic

gases at high electron densities. However, in combustion gases in which

6 is 102 - 10 3, no appreciable electron heating will occur.

(ii) Segmented Electrodes

In the segmented electrode generator, the total Hall current is zero

so that the electric field from (14. 32) is given by:

E* = -(1-K) UB
y

(1-K) 13 UB

E* = - e (14.99)
x 1 + $ e $I

Substitution of (14.99) into (14.94) yields:

j E* (1-K)2 e B +_ _ e 8_1+_Pe 2S 1 (14.100)

e 2(1 + e

In the numerator of the bracket, I may be neglected in comparison to Se

substitution of (14. 100) into (14.90) yields:

T Y (l-K) 2 2 2

e- e e (14.101)
g36(1 + Ee )2
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for the asymptotic electron temperature; the ratio of the electron temper-

ature to the local stagnation temperature is then:

Y (1-K)
2 B 2 'K 2

1+ e
T+ 36(1+ B BI)2e e 2

T 1 2 
(14.102)

o -i2

Comparison of (14.102) with the corresponding expression for continuous

electrodes, (14.97), shows that the factor e 2/(1 + Be 2) which is always

less thaunity is replaced by e2/(1 + e  which can be much greater
2

than unity. In fact, as the magnetic field, i.e., Be is increased, B e/(1 + e )
has a maximum when B = (jL "j. 1/2,

e = ( e /) which can be of the order of 10- 20.
The maximum value of the factor is therefore:

B2  a 2e
e ,max. 1 ee - a(14.103)

(1 + Pe 81)
2  4 4 MI

max

which is of the order of 25 - 250. Thus, considerable electron heating is

possible in a segmented-electrode generator. If the ionization follows the

electron temperature, extremely high electrical conductivities may be ob-

tained. For example, calculationshave been made for a mixture of argon

and 1% molar potassium for a stagnation temperature of 1500 0 K as a func-

tion of the local stagnation pressure and Mach number of the resulting

current density, see Figure 14. 14. The corresponding values of B = We Te e e

are shown in Figure 14.15. The parameter is (1-K) UB, where U is

related to the local Mach number by:

U _ 1) 0 (14.104)
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and the local pressure is given by

Y
V-1

p T (14.105)

when the temperature ratio is given by (14.96). In these calculations, the

effect of ion slip was neglected; the perfect gas law was used, and the

effect of the ionization energy on the energy equation was neglected. The

electrical conductivity is obtained by dividing the current density by the

transverse electric field (1-K) U B. The resulting electrical conductivity

is several orders of magnitude greater than that of the equilibrium elec-

trical conductivity at T . Note also that the electrical conductivity increases0

with increasing Mach number, which merely indicates that the coefficient
2

of,,'X in the numerator of (14.102) is greater than (Y-1)/2. Calculations

at other stagnation temperatures indicate that the electrical conductivity

is approximately proportional to the stagnation temperature. Thus, mag-

netically induced ionization may be of interest in closed cycle applications

of MHD generators. As of the present time, however, magnetically in-

duced ionization has not been demonstrated experimentally. Experiments

using an electric field, however, have verified the basic theory. 8,9

(iii) Hall Generator

For the Hall generator:

E* - UB
yI

KU B (14.106)

E* - e
x 1+6 8

For the Hall generator, the components of the electric field are given by:
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Use of (14. 106, 14.94, 14.90) yields the following expression for the

electron temperature:

Te y) fln2 e 2 K 2 e2

T - 1 + 2)+ (14.107)
g 3(1+ e2) e 2 e

As the magnetic field is increased, the first factor e 2/(1 + 8e2) rapidly

reaches a maximum of unity. The factor in the bracket reaches a maximum
2

when e = e/I; thus, this value of Be yields the maximum electron temp-

erature. Note that this maximum is the same as that for the segmented
2

electrode geometry. The maximum value coefficient of t /3 then

1+ 1 K2 0e, which compares to I (1-K) 2 0e for the segmented electrode

generator. Since in the Hall generator K is comparable to (1-K) in the

segmented electrode generator, the maximum electron temperature is

approximately the same in both generators.
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14.4 POLYTROPIC EFFICIENCY OF MHD GENERATORS

The local efficiency which was defined in the previous chapter is not useful

for thermodynamic cycles; the reason being that the previous definition was

based on local conditions instead of stagnation conditions. The local efficiency

was defined as

E j - - j -E j

L v • j x B j (v x B) - Ej + E* j (14.108)

Since the power density is -E • j and the ohmic heating per unit volume is E* . j,

this definition is the same as

77 Power
L Power + Dissipation

The denominator of (14. 108) is also equal to the ideal power output corresponding

to zero dissipation for the same pressure drop due to Lorentz forces, that is,

for the same current density. Thus, the ideal power is given by:

P = (-E .j) = - (E* -vxB) • j (14.109)Ideal - Ideal ,,1 ,4

For the same Lorentz force but zero ohmic dissipation, E* must be zero, which

yields the denominator of (14. 108). The local efficiency can also be represented

on a Mollier diagram along the static line A-B, see Figure 14. 16. Consider two

axial stations 1 and 2 along an MHD generator which are a distance L x apart.

As the gas passes between these two stations, the total enthalpy per unit mass is

changed by a H, which is also equal to the change in static enthalpy if the change

in gas velocity is negligible, while the static pressure change is p1 - P2 . The

ideal change in static enthalpy between these two pressures is h.. The local1

efficiency may therefore also be defined as:

17 - H (14.110)
1
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However, the thermodynamicist is usually interested in the stagnation

behavior of the gas, as along the line )?-B1 The reason for this is that the gas

usually starts at a small Mach number in a combustor or heat exchanger, and

after being accelerated in a nozzle and passing through the generator, is again

brought almost to rest to recover the pressure or to pass the gas through a heat

exchanger or some other low speed device. Thus, one is interested in the stag-

nation conditions of the gas in the generator. The local efficiency calculated on

the basis of stagnation conditions is called the polytropic efficiency 77 , some-

times called the "stage" or "local adiabatic" efficiency. From Figure 14. 16,

77 = LH/A H.. Now, because of the spreading of the constant pressure lines
p 1

with increasing enthalpy, LH.> Lh.; hence, 77 < 77L1 1 p

A slightly different definition of the polytropic efficiency is:

dH
r e (14.111)p dH.

1

where d H is the increment in total enthalpy due to electric power generation,e

- E -j, and d H. is the isentropic or ideal change in total enthalpy between the• " 1

same increment in pressure. The difference in d H and the actual change ine

total enthalpy d H is due to heat transfer from the gas. In this definition, the

heat transfer is charged as a loss against the generator, although this energy

may be utilized elsewhere in the cycle. This definition, of course, is not an

adiabatic efficiency. For the ideal or isentropic generator, there is zero heat

transfer, the first law of thermodynamics yields:

d PS

dQi = 0 = d H. - (14.112)
1 P1S

where pS and are the stagnation pressure and density, respectively. Sub-S

stitution of (14. 112) into (14. 111) and use of the ideal gas law for the stagnation

density yields:
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PS d He PS d H
7 d (14.113)

p RT S  d pS RTS  d H d p(S

The ratio d H /d H is the fraction of the total enthalpy which is converted into
e

electrical energy; the remainder is heat transfer from the generator; let this

fraction bea=dH e/dH. AlsodH =C TS , andC /R=Y/(Y-1) whereY is

the ratio of specific heats. Then (14.113) may be written as:

77 _ d n (14.114)p /-1 d tn p S

Then (14.114) may be integrated to obtain:

7 (-Y-1)

H - (14.115)

where the exponent of the stagnation pressure ratio is an average defined by the

integration of (14. 114) as follows:

PS
f7/ (V-i)f a)' d g-n P5

PS (14. 116)

P S

Now, in the complete MHD generator, the stagnation enthalpy progresses from

I to 3, see Figure 14.16, that is, from H to H3 . The ideal change in enthalpy
0
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between the same stagnation pressures is given by H - H3 1. The overall generator

efficiency is defined as:

a (H - H3 )
77 _ -H3 (14. 117)

g o - 3'

since only the fraction a of (H - H3 ) is converted into electrical energy. The

relation between H and H is obtained from (14. 116) with 77 = a = 1:

< >

H 3 -
(14. 118)

while H3 is obtained from (14. 11) directly. The generator efficiency therefore

becomes:

\PSo/
1-

3

For small pressure ratios across the generator, that is, for p s3/PSo 1, the

generator efficiency given by (14. 119) becomes just 77 . But for large pressureP
ratios, the pressure ratio terms in the (14.119) become small, and the generator

efficiency approaches a; if the pressure ratio is sufficiently large, the generator

efficiency becomes independent of the polytropic efficiency. This effect is well
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known in the design of steam turbines and is the reason for designing them for

very large pressure ratios. The reason for the high efficiency is as follows:

the dissipation in each stage, or at each section of the generator, appears as

heat energy which is passed onto the next stage or section; the main effect of

the dissipation being a loss of total pressure. But, if the pressure ratio of the

machine is large enough, the loss of pressure is small, due to the flattening of

the constant pressure lines at low pressure on the Mollier diagram, as shown

in Figure 14.17. For moderate pressure ratios, 77 is equal to a (H - H 2)/

(H - H2 ). For large pressure ratios, 77 is shown as a (H ° - H3)/(H 0 H 3 ).

From Figure 14. 17, it is seen that the generator efficiency is larger for the

larger pressure ratio. Note that large pressure ratios imply large temperature

ratios, since (14. 119) can also be written as:

Ts T (14.120)

T 
S

0

However, in a MHD generator, in which combustion gases are used at pres-

sures greater than one atmosphere, the lowest total temperature at which the

gas still has sufficient electrical conductivity is about 40000 R; the highest possible

flame temperature is about 8000 0 R. For these conditions, it is important that

the polytropic efficiency be as high as possible because the generator efficiency,

as calculated from (14.119) or (14. 120), will be only slightly larger than 7 .

The generator efficiency will be improved appreciably over the polytropic effi-

ciency if the pressure ratio is very large, which requires some method for

improving the electrical conductivity at low temperatures.

14.4a Polytropic Efficiency in Linear MHD Generators

In this section, the general expression is derived for the polytropic efficiency

in linear MHD generators under steady flow conditions at a particular generator
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station x, where the flow velocity in the x-direction is u (x), and the transverse

velocity components are negligible. As before, the local magnetic field is

transverse to the generator in the z-direction. It is assumed that the magnetic

Reynolds number is small so that perturbations of the imposed magnetic field

may be neglected. If current is allowed to flow, then there will be a Lorentz

force in the direction of the flow, and power generation per unit volume equal

to -E j. In addition, there is a friction pressure drop (dp/dx)f which is

negative, given as follows:

)f A

where T" is the average shear stress at the wall; C is the perimeter length ofW

the cross-section, and A is the cross-sectional area; each of these will generally

be a function of the generator station x. In general, a friction factor cf is de-

fined as follows:

1 2
TW = -u2 c

W 2 f

In addition to the skin friction, there may also be heat transfer from the

gases in the MHD generator to the walls; this is given by:

H
1) - qwC/A

where qw is the average heat transfer rate per unit area over the perimeter of

the cross-section. The heat transfer rate is generally related to the film coef-

ficient h as follows:

qw = h (Ts - TW)
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where TS is the local bulk gas stagnation temperature and T is the wall temp-

erature; the film coefficient is usually made non-dimensional as follows:

S h
St - PuC

p

where St is the local Stanton number. Now, if the Prandtl number of the gas,

C p // is close to unity, as is the case for most gases, if the degree of ioniza-

tion is less than a few per cent, then as a general rule the Stanton number is

equal to half the friction factor, * or:

~ 1
st ~ 2f

The one-dimensional momentum and energy equations therefore become:

du ~(4R\(j x B)
P u + d = (j x B) + -d) = b (14.121)du x dx ,, x d,, f b

E'j

dH = E" j q C _ (14.122)
dx - E. A a

where b is the fraction of the pressure drop due to the Lorentz force:

b (= (14.123)

(jxx

*The presence of a magnetic field may alter this relation, if the magnetic inter-

action parameter is much larger than unity.
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and a is the fraction of the enthalpy drop which is due to electrical power genera-

tion as was previously defined. From (14. 122),

dH E j
e ___(14.124)

dx Pu

and from (14. 113), the polytropic efficiency is:

PS dHe/dx E2.
77 ~ - e (14.125)

p T dp /d x PuRT Sd (-Ln p S)/dx

To evaluate d (-n p S)/d x, use is made of the following isentropic relation:

V
v-1

or

Ln p5  tn ~Lp + 'y n T - -2 ~nT (a)
S Yi S 'Y-1

Differentiation with respect to x yields:

d (tn p) T?
S -, 7Tv Y' S (b)

dx p 7-1 T ' ^-I

where ( )'E(d /c&x). Next, substitute

H' C TI + uu' (C)
p
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in the energy equation, and eliminate c uu' between the energy equation and the

momentum equation. The result is:

V-i * V TI_ 1-' ~ (d)
p /-I T p b

also, from the energy equation,

E"j
TI = (e)

S apu C
p

Substitution of (e.d) into (b), and then into (14. 125) yields:
A

77 a
p u (j x B) T T

-a S TS•+ I - (f)
E-j b T T

since ti,(j x B)M u. (j x B); hence, the first factor in the denominator

is just the reciprocal of the previously defined "local" electrical efficiency 77L

Thus, the polytropic efficiency becomes:

a

p a TS  TS  (14. 126)

77 bT TL

where T s/T is the ratio of the local stagnation temperature to static temperature,

which for a perfect gas is given by:

TS
T - I + 2 (14. 127)
T 2
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where }tis the local Mach number. To proceed, expressions are required for

a, b. Several possible cases will be examined in the next three sections:

a = b = 1, corresponding to zero friction and zero heat transfer; a = 1, b < 1,

corresponding to zero heat transfer but finite friction, and a < 1, b < 1, corres-

ponding to both heat transfer and friction.

14.4b Polytropic Efficiency for Zero Friction and Zero Heat Transfer

For this case a = b = 1, and use of (14. 127) in (14. 126) yields:

1 (14.128)
P 1 + L_-1 ek2 (1- 7L

Thus, for the polytropic efficiency to be close to the local efficiency 77L , either

77 must be close to unity or else I (Y-l)qk 2 must be small. Thus, the local
L2

efficiency 77 is identically equal to the polytropic efficiency of a subsonic, zero

heat transfer, zero friction, flow. For combustion gases where V' "W 1. 2,99z__ 1,

and 77L = 0.8, the polytropic efficiency iA only 2% less than 7L" But for

gases in which ^/ = 5/3, k = 2, and 77L = 0.8, the polytropic efficiency is almost

25% less than the local efficiency 77 L

14.4c Polytropic Efficiency With Friction But Zero Heat Transfer

With friction but zero pressure drop, a = 1, and from the definition of b,

I -T C/A-=1- 'CA(14. 129)
b (j x B) _

To proceed further, an expression is needed for (j x B) , which requires
,

that the geometry be specified. We will consider all three basic geometries.

Actually, since the local efficiency is equal to K for both the continuous and segmented
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electrode geometries, they may be considered as one case with an effective

transverse electrical conductivity which is evaluated as follows:

a
Continuous Electrodes: aef f =2 2(1 + BB)2 + 2

e 
e

Segmented Electrodes: aeff -

Since the local efficiency is different for the Hall generator, this will be con-

sidered separately.

(i) Continuous and Segmented Electrode Generators

For these two geometries, (j x B) = (K-1) a uB 2 , so that the ex-, , Xeff

pression for b becomes:

1 cf
-1+ 21(1-K) (14.130)

where I is the magnetic interaction based on a length equal to A/C as

follows:

B2
eff B (14.131)

OuC

Finally, a parameter Z may be defined as:

Z f (14.132)
21
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so that b is given by:

S1 + Z (14.133)
b 1-K

Substitution of (14. 133) into the expression for the polytropic efficiency

yields:

77 1 T (14.134)P F1-K] T1

[ K (I-K) _ T

Now, for any given value of Z and T s/T, there is a value of K which

minimizes the bracket in (14. 134) and which therefore yields the highest

polytropic efficiency. This value of K = K is given by:m

K = I +Z - Z (14.135)

or alternatively,

2(1 -Km
Z M) (14. 136)

2 K -1m

The maximum polytropic efficiency is therefore:

2K -|

-7 1 m (14.137)1 ,- (1-K m)(-1)/ 2"

p8
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For subsonic flows where the Mach number is negligible, p = 2 K - 1;
pm m

substitution of K in terms of 77 into (14. 136) then yields:

Z 4-pm)2 (14. 138)
lf< 4 rpm

which is identical to the expression for thejpaximum local efficiency of a
,: v nb C!I.y , 2

Hall generator, with Z replacing 1/c . This indicates that small values
A e

of Z are required to achieve high values of the polytropic efficiency. Now,

I based on A/C will seldom be more than 0. 1, while the friction factor f

is generally inversely proportional to the Reynolds number raised to the

power of 1/2 for laminar flows and 0. 2 for turbulent flows. * The result

is that very large flow Reynolds numbers are required to obtain high values

of the polytropic efficiency; that is, Z must be small.

For Z much less than unity, and finite Mach number, the above ex-

pressions may be simplified as follows:

Z << I: Km 1 I- (14. 139a)

which clearly shows that the polytropic efficiency decreases with both

increasing Z and Mach number.

In the preceding discussion, it was assumed that the Mach number

was held constant. However, in all MHD generator, the mass flow rate

is usually specified. It is therefore of interest to determine the manner

in which 77 changes with Mach number for a constant mass flow rate.
] m

It has been assumed here that the magnetic field does not affect the friction factor.
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For simplicity, consider a square cross-section which has a characteristic

dimension h, so that

A/C = h, andh=/m75Ti
4

where i is the total flow rate. Also, the skin friction factor cf is inversely

proportional to the Reynolds number to a power n:

-n = G PIh) -n GAn -n/2

cf =GR Ge  G n ( u)
m

where n = 0.5 for laminar flow and 0.2 for turbulent flow, and G is a

constant. Also,

+1i
'u Ps O ( 1 + 7 -172) 2 (1- Y)

a S  2 /

Thus,

3 n

G 1/2 An/2 (VPS/aS)4 4

p =1 /-2 . (n+1)/ 4 B1/2
pm B ff

(- \2)(-) ( 4 3 _n

(14. 140)

The terms which depend explicitly on Mach number increase with

increasing Mach number, as is shown in Figure 14. 18.
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If the effective electrical conductivity also decreases, then the maximum

polytropic efficiency given by (14.140) will decrease with increasing Mach

number. On the other hand, if the electrical conductivity increases with

increasing Mach number, as for example is the case with magnetically

induced ionization, then the effect of increasing Mach number on the poly-

tropic efficiency is mitigated.

(ii) Hall Generator
£

From (14.44) and (14. 123) the expression for b becomes:

1 (_+ 0, 2
1 1 + e Z (14.141)
b = 1,+ 2 K

e

so that the expression for the polytropic efficiency, (14. 126) becomes:

1 TS 1 I+Z (+Z)+K+Z
17 1- T + K(1-K) '2 

e (14.142)

This expression is essentially the same as that given by (14.128) in the

absence of friction, except that in computing the local efficiency of the

Hall generator, , 2 should be divided by the factor 1 + Z + $' 2 Z
e e

14.4d Polytropic Efficiency With Friction and Heat Transfer

For this case, the factor a defined as

-1 qW C/A
a =1 - Ej
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is now larger than unity. Use of E-j= GK (I- K) e 13"4"  for a crossed

field e, , 01 ', ( T -T) q,,= (Ts-T k /t c

Z; -
= 1+ ( (14. 143)

a K(1-K)1 
-Ts

where Z is defined by (14. 132). Then, use of (14. 133, 14. 143) in (14. 126) yields:

1 Ts S z (TW\
71 KT T K(1-K) (14.144)

The last term in the above expression represents the effect of skin friction and

is identical to 14. 134, except that TW has replaced TS in the last term. Thus,

wall cooling, that is, TW < TS , leads to a reduction in the pressure drop due to

friction. This, of course, is the well known effect in one-dimensional compres-

sible flow, namely, that cooling increases the stagnation pressure.
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14.5 END LOSSES IN LINEAR MHD GENERATORS

In addition to the friction losses described in Section 14.4, there may be

electrical losses at the inlet and exit, caused by eddy currents which flow from

the positive electrode to the negative electrode through the conducting gases in

the region of the channel which is external to the main magnetic field, that is,

upstream and downstream of the electrode region, see Figure 14. 19. At present,

only the simplest analyses of this problem have been made because of its com-

plexity. The assumptions generally made are:

1. The average electron collision time T is constant.e

2. The presence of viscous boundary layers is neglected. The basis for

this assumption is that the viscous Reynolds number will be large in

MHD generators, so that the viscous boundary layer will be quite thin.

3. The gas velocity is a constant, taken as U in the downstream (x) direc-

tion. This assumption really contains two assumptions:

a) The flow is essentially incompressible, that is, the Mach number

is small.

b) The induced Lorentz forces do not appreciably alter the velocity

profile. This assumption is valid if the magnetic interaction

parameter based on the channel width, B 2h/P U, is small com-
10

pared to unity.

4. The magnetic field in the generator is equal to the imposed magnetic

field. This assumption is valid if the magnetic Reynolds number

a 1A Uh is small, which is generally true in MHD generators.o

5. The imposed magnetic field is in the transverse direction only 0-

the magnitude is a function only o+ +he lonpAAdnrO ccat, in the

region near the ends of the magnetic field, that is, In the "shaded"

region. This assumption violates Maxwells' equations, but the error

is not serious if the pole face separation distance is sufficiently small;

the results are qualitatively correct.

8b



-+4

P.4)

4J

6-0

870



8. The insulating sides are perfect electrical insulators and the electrodes

and leads have zero electrical resistance.

7. With the above assumptions, the problem is two-dimensional in the

plane normal to the magnetic field.

8. The flow, magnetic field and electric field are steady. The problem is

then to calculate the electrical current distribution in the generator,

the power generaced, the pressure drop, and the overall efficiency

of the generator.

14.5a Basic Equations

The basic equations are.

V xE =0 (14.145)

Vj =0 (14.146)

Since the flow is steady, E = -V 'P. Thus, from (14. 145), the electric potential

is continuous, while from (14. 146), the electric current is continuous.

The boundary condition at the insulator is that the normal component of

the electric current must be zero. In the geometry of Figure 14. 19, this means

that

jy(X, h) = jy(X, 0) = 0; X < 0 (14.147)

At the electrodes, the boundary conditions depend upon the type of electrodes

which are used. If the electrodes are continuous, then they are equipotential.

On the other hand, if the electrodes are segmented, then one may specify either

(a) the current distribution along the electrodes, (b) the transverse voltage dif-

ference P (X, 0) - 4 (X, h), or (c) the ratio of the voltage to the current, which

is the same as specifying the distribution of external load resistance. In the

ensuing sections, we will consider both continuous electrodes and segmented

electrodes for generators which use the Faraday current.
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In the generator, there usually exists an insulated inlet section, the elec-

trode region, and an insulated outlet section; in principle all three regions should

be analyzed simultaneously. However, it has been found that if the generator

aspect ratio a, defined as the ratio of the electrode region to the generator

width h, is greater than about 0.7, then the inlet and exit regions can be analyzed

separately, and the results combined to yield the generator efficiency; that is,
11

the exit region has no effect over the inlet region and vice versa. In addition,

if the velocity profile is constant, then the current distribution at the inlet and

exit are similar; hence, only the inlet region is analyzed in this section. How-

ever, in order to calculate the generator efficiency, both the inlet and exit

losses must be considered. Although in general, the MHD generator will have a

diverging cross-section so that the inlet and exit losses will be different, for

simplicity we will assume that the inlet and exit losses are identical; that is,

we will consider the generator to have a constant cross-sectional area. Thus,

it is assumed that the insulating region extends an infinite distance upstream of

the electrode region (X < 0) while the electrodes extend infinitely downstream.

Finally, the physical dimensions are made non-dimensional as follows:

x = x T/h

y = yTT/h

so that the non-dimensional channel width is I.

14.5b Continuous Electrodes, Scalar Electrical Conductivity

With the electrical conductivity scalar, the current equation becomes:

j = C'(E + vxB) (14.148)

so that (14. 146) becomes:

V2 = 0 (14. 149)
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since v = i U and BZ = BZ (X). At the electrode at Y = 0, the potential may be

taken as + 0 while at the electrode at Y = h, the potential is taken as - W

so that the potential difference between the two electrodes is 2 0W" Along the

insulator at X < 0, the normal component of the current is zero so that (14. 148)

becomes

-, (X , 0) = " (X , h) U - B Z  (X )

(14.150)

(X < )

We will consider three different variations of the magnetic field in the

region upstream and downstream of the electrode region:

(i) B Z (X) = 0; X < 0

(ii) B Z (X) = B exp( X/X); X < 0o

(iii) Bz (X) = Bo; -X < X < 0oo

Bz (X) = 0 X < -X °

Case (i) corresponds to the magnetic field ending at the end of the electrode

region. Case (ii) corresponds to an exponential decrease in the magnetic field

beyond the electrode region with an e-folding length X. Case (iii) corresponds

to an extension of the magnetic field at constant magnitude B for a distance X
0 0

upstream (or downstream) of the electrode region.

This is then a problem of solving Laplace's equation in an infinite strip.

However, it is complicated by the boundary conditions: for x > 0, the value of

the potential is specified at boundaries, while for x < 0, the normal gradient

is specified. For this reason, solutions cannot be obtained analytically by means
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of separation of variables. However, this problem may be solved by means of

various techniques which utilize complex variables; the simplest method is to

conformal map the strip so that the boundary on which the normal gradient is

specified is perpendicular to the boundary on which the potential is specified.

The simplest mapping which accomplishes this transformation is shown in Figure

14.20, and is given by:

Z = -nsinZ' (14.151)

where Z = X + i y is the original complex plane and Z' = X'+ iy' is the trans-

formed plane. In the Z' plane, I-aplace's equation must be satisfied with respect

to x', y'; the potential along the electrodes remuins the same, but the normal

gradient must be appropr iately transformed. The three cases are considered

next:

(i) Zero Extension to Magnetic Field

For zero magnetic field upstream of the electrodes, from (14. 150)

(P (/ 6y) = 0 along the boundaries; hence, in the transformed plane

( P/ 6/y,) 0. The solution to Laplace's equation in the Z' plane is then

obviously:

2' W
=X (14. 152)

Next, the total electrode current to some point X can be calculated as

follows:

Jy (X 1 ) = f ydX=-C l (7 - (0, XI)-UB) dX

0 0

where (14. 148) has been used. The first term in the bracket can be made

dimensionless, and the second term integrated as follows:
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x

Jy(Xl) -o T (0, x) dx -aUBX 1

0

Now (W'/6 y) d x - (5'P/ ax') dy' along the eec.+rode, and from (14.152),

(P/ax' = 2 W/TT. Thus,

J (X1 ) = 2oCYI 1 /r l -aUBX 1  (14.153)

Along the electrode Z = x and Z' = T[2 + i y', so that (14.151) becomes

x = tn cosh y'

- 1
For large values of the argument, cosh y, exp y' so that

x 1  t n ( expy) y ln2

Substitution of yI in terms of X' into (14. 153) then yields:
1 1

J (X) = ap2 - cUB X (14.154)y 1 W 1

Now, the definition of the load factor may be taken as:

K = 2P w/UBh

so that (14. 154) becomes

J (X) = -CUBX 1 (l-K) -K 7UBhTT- n2 (14.155)
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The first term in (14.155) is the "ideal" current, which would exist in

the absence of end losses; the second term represents the current loss,

due to the shunting effect of the conducting fluid upstream of the magnetic

field. Note that this term is proportional to the voltage difference between

the electrodes, that is, the load voltage. The generated power up to point

X 1 is given by the product of the current J (X 1 ) and the load voltage,

K U B h. Thus, the second term in (14. 155) also represents the power loss.

If the exit of the generator has the same dimensions as the inlet, a

similar loss exists at the exit, thus, the total lost power PL per unit

height is:

PL = 2 • KUBh • C 17-1 K UB h tn 2 (14.156)

while the ideal power P. for a generator of length L, width h, per unit1

height is:

p. = a K (1-K) U2B 2 h L (14.157)
i

The actual power P is the difference of (14. 157) and (14. 156):a

P = 0U 2 B 2 Kh [(l-K)L-2n -1htn2] (14.158)

To calculate the efficiency, the flow work W through the generator

must be calculated:

h L

W =f f vv' jxB dYdX (14.159)

0 0

The integration is taken over )< to obtain the average flow work across the

generator, while the integration over y is taken only where the magnetic
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field is non-zero. With v = i U, and B in the Z direction, the only compo-

nent of current in (14. 159) is J y; thus,

Ly

W = -a (ff+ U BdYdX (14.160)

0 0

Integration with respect to Y and then X and use of the definition of K

yields:

W = -o(1-K) U2 B 2 L h (14.161)

which is identical to the expression which one obtains if the end regions

are ignored. The efficiency is then given by

p7 = - = K [1 - "a (14.162a)

from (14. 158, 14. 161), and where a* is a modification of the aspect ratio,

a* = g h n 2 (14. 162b)
TTL

Note that as the generator becomes very long, that is, as a*--4 0, then

the expression for the efficiency becomes identical to the "local" efficiency

K. Also, K = 0 still corresponds to short circuit, but open-circuit condi-

tions correspond to the bracket in (14. 162equal to zero, e.g., when

1
K (14.163)

o.C. 1+a

Thus, the larger the value of a*, the smaller the open-circuit voltage.

However, when the voltage is equal to the open-circuit voltage, the effi-

ciency is equal to zero, rather than equal to K. The efficiency is therefore
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greater than zero only for 0 ' K < (1 + a*)-1. A typical efficiency curve

is shown in Figure 14.21 for an aspect ratio L/h = 1. Note that the maximum

efficiency is only 0.29, corresponding to a loading factor of 0.45. As the

aspect ratio L/h increases, a* decreases, and both the maximum efficiency

and loading factor at maximum efficiency increase . For any given aspect

ratio, the maximum efficiency is obtained by equating to zero the derivative

of (14.162U). The maximum efficiency is then given by:

Sm = I - (14.164)

+1 +1

This maximum efficiency is shown in Figure 14.22. It is seen that large

aspect ratios are required to obtain efficiencies greater than 0.6.

For a given aspect ratio, the efficiency can be improved by the insertion

of insulating vanes at the inlet and exit parallel to the flow but external to

the magnetic field region. For example, a single inlet vane and exit vane

placed in midstream will double the apparent aspect ratio; two equally

spaced vanes will triple the apparent aspect ratio, etc.

Another method of improving the efficiency is to extend the magnetic

field. Actually, most magnetic fields decrease exponentially away from the

pole faces. Hence, this type of "shading" is considered next.

(ii) Exponential "Shading" of Magnetic Field

To solve this case, it is convenient to introduce the complex potential

(z) = P + i 4) (14. 165)

such that P, 4) obey the Cauchy-Riemann conditions; furthermore, the

equation for 4 is also

= (14. 166)
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Thus, ip is a "stream function" for the potential. Also, the contribution

to the current caused by the potential gradient j. is given by jr---V Or:

= -- Re d
(Ph d z
x

J o - h Im d- -
(P =h

y

or:

a;T  d@
- = j i(Pa h dz (14.167)

x y

Thus, between any two points z1 and z2 , the total current between these

two points JP is:

TV = - [ (z )+ t(z2) (14.168)

In particular, if z and z2 are points on the same equipotential, then:

J-- =z 1i (Z (l- z2)]

or

(14.169)
J , = Re [(Zl) (z2)

y

99



Now, for this case,

B = B e ; x< 0 (14.170)0

so that along the insulator, for jy to be zero:

b c h r'xa - h UB e (14.171)

where

' =h/T X

In the z' plane, along y' 0,

bP -6P dz (14.172)

Use of (14.151) and (14.171) in (14.172) and integration with respect to

x' yields:

hUB
- TT sin x' (14.173)

Now, ;P must obey Laplace's equation in the transformed plane; thus, the

solution may be written as:

2 PW y '  O2 y2S-2ny'
- + Z b cos znx' e (14.174)

n=0
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The first term above satisfies the boundary condition at the electrodes; it

is in fact the solution obtained in case (i). The second term represents

the Fourier series solution to Laplaces equation. Only the cosine series

is used because the sine series does not satisfy the boundary conditions

along the electrodes. The cosine series thus represents the additional

current due to the shading of the magnetic field; this will be designated as

+. Now, from (14. 169), the additional current to the electrode between

(TT/ 2 , 0) and some point (TT/2 , 3;1) where y1 >> 1 is:

J (Y 1  (7 2 i +( ) (14.175)

From (14. 174), the first term in the above bracket is just the first term

in the Fourier series, b . This is obtained by solving for the Fourier0

coefficients along y' = 0 from (14. 173, 14. 174):

h UB o .Yx -2ny
+ = hUB 0sin x=I j b cos 2nx'

n

from which

2T B2

lim 4)+ ( 2  y 1 b = 2 J sin x dx'

Y, 0
1

hUB BY+
S oY0  (14. 176)

From (14. 173),

TT 0) hUB0
4)+ (. 0 '- 0 (14.177)
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Substitution of (14. 176, 14. 177) into (14. 175) yields the additional electrode

current:

CUB hr
1 (14.178)

The additional power at the inlet is given by 2 'P J +  If the configuration~?W
at the exit is identical to that at the inlet, an equal amount of additional

power will be generated at the exit due to the shading of the magnetic field.
a

To calculate the efficiency, the flow work is calculated in'manner

analogous to (14. 160):l1

W = OU2 B 2h2 2 r - r( +) -(l-K) L/h

16 7 n A2 1 (14.179)

n3 n =2,4,6 n V

where:

1-1 (- 1) n / 2  I"( + 1)

2 2 V r

The efficiency is obtained by dividing the total power by the flow work given

by (14. 179); this is shown in Figure 14.21 for two different e-folding lengths
1

of the magnetic field, 1 h and h. It is seen that considerable improvement

in the efficiency is obtained by slight shading of the magnetic field.
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(iii) Constant Magnitude Extension of the Magnetic Field

12
The magnetic field may also be extended at constant magnitude ;

the efficiency for an extension equal to ten channel widths is shown as the

dashed line in Figure 14. 21. It is apparent that the effectiveness of this

type extension is poor in comparison to the exponentially shaded field. This

is due to the sudden termination of the magnetic field at a point where the

channel is an insulator. Thus, almost the full open-circuit voltage is

developed there. This leads to a maximum eddy current loss of power at

this point, since this loss is essentially proportional to the voltage difference

across the channel.

14. 5c Effect of Tensor Conductivity

In general, the electric current vector can be separated out into two parts:

one due to the stationary potential gradient V P, and the other due to the induced

field v x B as follows:

J = (, + JB (14.180)

This procedure has already been utilized in the preceding section, see (14. 167).

Since the values of v and B are assumed, the induced current is obtained easily,

but to obtain the current due to the potential gradient requires the solution to the

potential problem. The boundary conditions for the potential problem are usually

either a specified potential or normal current. When the electrical conductivity

is scalar, the normal current boundary condition becomes a normal gradient

of the potential. When the potential or the normal potential gradients are specified

on the boundaries, the problem is well posed.

However, when the electrical conductivity is tensor, the specification of the

normal current does not lead to a normal gradient of the potential. For example,

consider the velocity in x direction only, and the magnetic field in the z direction

only. Then the current components become:
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O UB
a e 2B CUBJB = 2 ; B =- e-2

e e

(14. 181)

P + 2 T +_ e Z_

Y 2 a y - e -F
e L-

Thus, if 345 is specified as zero on a boundary, then ( P/ Y) -e ( 6 ( / aX ) .

- 1e
Thus, the equipotential lines have a slope of 0 e with respect to the x-axis.e
This type boundary condition is neither Dirichelet nor Neuman, and therefore

requires special treatment. To solve this type of problem, one may conformal

map the original region such that the equipotential lines are straight and equally

spaced in the transformed plane. The boundaries along which the potential lines

are sloped are then mapped at the appropriate angle to the equipotential lines.

Using this technique, the potential map for the continuous electrodes have been

calculated 6 when the electrical conductivity upstream of the electrode region

is zero. The resulting equipotential and current flow lines are shown in Figure

14.23, for L eT = 1. The potential and current due to the induced electrice e

field U B have been omitted. It is seen that there is a current concentration at

the upper left-hand corner of the electrode. There is no effect of the distortion

at the inlet on the efficiency; however, the total power is reduced somewhat by

the end effect.

Using this same technique, the potential field and current has been obtained

when the magnetic field and electrical conductivity are extended infinitely up-

stream of the electrodes 13 and when the electrodes are skewed with respect to

one another. 14
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For values of We T in excess of unity, the mapping technique has alsoe e6
been used to determine the current flow in the vicinity of segmented electrodes,

when the electrode length in the direction of flow is equal to the length of insula-

tion between electrodes. The calculated current distributions are shown in

Figure 14.24. It is seen that there is a concentration of current in the down-

stream portion of the electrode; and also, the distortion of the current lines

extends into the stream only a distance equal to the electrode length.

If the electrode pitch distance were infinitely small, the effect transve1*3e

conductivity would be equal to the scalar electron conductivity, in the absence

of ion slip; the effect of finite size electrodes and insulators decreases the

effective transverse conductivity. The theoretical reduction 15 is shown in
Figure 14.25 for W Te = 1, where it is seen that increasing pitch distances

e e

decrease the effective transverse conductivity. In addition, increasing values

W T also decreases the effective transverse conductivity as shown in Figuree e

14.26. Also, increasing the electrode width as compared to the electrode
16

pitch is deleterious. Finally, it has been shown that the viscous boundary

layer along the electrode surface has no effect on these results, and also,
15

finite size electrodes do not effect the efficiency, neglecting end losses.

The effect of end losses on efficiency with segmented electrodes has
17

also been investigated theoretically. The maximum efficiency is shown in

Figure 14.27 for various aspect ratios, where it has been assumed that the

electrode pitch distance is infinitely small. In the vicinity of the inlet or exit,

one may specify either (I) the current to each electrode, (ii) the transverse

potential difference, or (iii) a relation between the electrode current and

potential difference. To investigate the effect of these different conditions,

calculations were made for W T = 0 for (i) constant electrode current and (ii)e e
constant interelectrode potential. It can be seen that the efficiency for case (i)

is greater than (ii). Also, it can be shown that the results for case (iii) will

be between (I) and (ii); hence, only the "constant current" case was calculated

for finite We T . It is seen that increasing W T increases the efficiencye e e e
slightly as does extending the magnetic field. It therefore appears that the
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generator efficiency for segmented electrodes and finite values of W T is
e e

greater than for continuous electrodes.

The influence of tensor conductivity on end losses has also been calculated

for the boundary condition at the electrode that jx = 0. Although this is not as

realistic as those used above, the resulting field distribution and conclusions
18are essentially the same.
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14.6 COMPRESSIBLE FLOW IN FARADAY CURRENT MHD GENERATORS 1 9 ' 2 0

In any magnetohydrodynamic generator which uses an ionized gas, the

effect of compressibility must be included if there is a large pressure drop

through the generator. Thus, the results of the previous sections may be
0.

regarded only as "local" analysis over a short section of the generator, in
A

which the change in properties is small. As the temperature and pressure

change in the generator, so will the degree of ionization or composition and

hence the gas is not perfect, and the analysis of the flow may require numerical

integration. 2 1 , 2 2 However, if the degree of ionization is small (< 0. 1%), then

the total amount of ionization energy is small compared to the gas energy, and

the compressibility factor is also close to unity. Under these conditions, one

may assume that the gas is perfect.

The effects of friction and heat transfer may also be neglected if the Z

factor (14.132) is small; which implies "large" generator dimensions. Finally,

if the interaction parameter (14.131) is small compared to unity, which is

generally correct, then the properties of the ionized gas change "slowly" in -the

flow direction. With this assumption, one may use the assumption of quasi-one

dimensional flow; that is, the transverse flow velocities in the channel are

small; and the axial flow velocity, magnetic field, electric field, and electrical

conductivity do not vary across the cross section of the generator. The assump-

tion concerning the magnetic field is valid when the magnetic Reynolds number

is small. If x is the direction of flow and u is the mass averaged gas velocity

in that direction, then the appropriate equations are as follows:

Continuity

puA = constant i m (14.182)

Momentum

du +d= i • (j x B) (14.183)
u1 dx1
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Energy

Pu - h+ =) E - j (14.184)

State

p = pRT = nkT (14.185)

Caloric

dh = C dT (14.186)
P

where A(x) is the cross-sectional area, C is the specific heat at constantP
volume assumed constant, and R is the gas constant,

R = k/< m> (14.187)

when < m> is the average mass of the particles:

n
<m> = m (14.188)

s n s

In addition to these equations, it is necessary to specify Ohm's law, and the

manner in which the conductivity, or the factors which enter the expression for

the conductivity, vary with temperature, pressure, etc. These equations

(14.182) - (14.186) have been used to analyze the compressible flow in Faraday

type generators; that is, for continuous or segmented electrodes. At present,

compressible analyses have been not performed for the Hall type geometry.

The Hall geometry generally requires an additional equation for conservation of

current in the downstream direction,

j A = constant (14.189)
x
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In general, it is also necessary to specify the manner in which the transverse

magnetic field varies in the downstream direction. For convenience it will be

assumed that the magnetic field is constant: methods for including the variation

of the magnetic field will be indicated. Also, the electric field must be speci-

fied; in general the electric field will be taken as a fraction of the transverse

induced electric field uB. Even with the magnetic field and electric field

specified, equations (14.182) - (14.186) are not determinate: there is one more

unknown than there are equations. It is therefore necessary to specify one of

the variables to solve these equations. * In the following sections, solutions

will be presented for various variables such as velocity, Mach number, tem-

perature, pressure, and area specified constant. The paths which are taken

by keeping these variables constant are shown in Figure 14.28.

14.6a Constant Velocity Generator

With the axial velocity held constant, the electrical energy is extracted

from only the thermal energy of the gas. Actually, this may be regarded as a

two-stage process, since the Faraday induction removes electrical energy onl

from the kinetic energy of the flow. However, the gas is then accelerated to

restore the velocity, but in the process of acceleration the static temperature

decreases. The momentum and energy equations become, respectively:

dp = (jxB). i (a)
dx

dT_
0 uC - E - j (b)

p dx

*There is a school of thought which asserts that even when the magnetic a Bz

Reynolds number is small, one must include Maxwell's equation jx = U -
However, it is physically more plausible that the current in the gas

causes an x-component of the magnetic field and that (a Bz/a x) may be
neglected. 23
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The first integral of equations (a), (b) is obtained by division of (a) by (b) and

integration as follows:

-1 d np 1 _1 (c)
Y d nT 1L K

where use has been made (14.108), and the fact that in a Faraday type gener-

ator, the local efficiency is equal to the loading factor, whether the electrodes

are continuous or segmented. Since the generator is expected to have a certain

overall efficiency, it is desirable to have the polytropic efficiency approximately

constant; hence, the loading factor K will be chosen constant. This also insures

that every section of the generator will be generating electrical power. With

K and y constant, equation (c) may be integrated immediately.

7L (Y- 1)

T(x) - (14.190)T 1 PlL i

Equation (14.190) may be compared to the usual isentropic expression:

T (d)
T 1 pT1 P

Since 17 L is always less than unity, (14.190) shows that for the same pressure

ratio, the temperature decrease is always less than isentropic. This is a

direct result of the ohmic heating of the gas.

The entropy change may be calculated from:

S = C tn T - Rtn p -  (e)
p T 1  P1
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Substitution of (14.190) in (e) yields:

AS 1 - K T1

C K T
p

which shows the rapid increase in entropy of the gas withdecreasing K. This

is also due to the increased ohmic heating associated with the increased elec-

trical current density. Equation (f) may also be rearranged as follows:

T KAS (
T exp (1 - K) C (g)

To obtain the variation of the gas properties in the downstream direction,

it is necessary to integrate either equation (a) or (b), making use of the gener-

alized Ohm's law for a Faraday type generator:

E =KuB

EE = KuB-)((14.191)

j = a eff (E-uB) a effUB (l-K)

where the magnetic field B is taken in the Z-direction, the electric field E is in

the y-direction and a eff is given in Section 14.4b. For example, substitution of

(14.191) into (a) yields:

dp= - (1 - K) a 2 (14.192)
dx eff

Now a eff is generally not a constant, but depends upon temperature, pressure,

and possibly the recombination rate. If aeff is purely a "state" variable, then

it may be expressed in terms of pressure alone by the use of (14. 185, 14.190);

and (14. 192) may be integrated directly. Also, if B varies in a prescribed

manner with x, this variation may also be included in (14. 192), and the integration
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performed. A different method of handling the variation of conductivity and

magnetic field is to use a transformed variable t, defined as follows:

aefB2

d2 dx (14.193)
(aeff B)

where the subscript 1 refers to conditions at the generator inlet. Then (14.192)

becomes:

k= - (1 -K) (a B2 )lU

d aeff I

which may be integrated immediately to:

P1 - p (Q) = (1 - K) (aeff B 2)1 ut (14.194)

Now with the use of (14.185, 14. 190), p, T, and consequently aeff may be

obtained as a function of C. The variation of with x is then obtained by inte-

gration of (14.194) as follows:
~x

] [f (6] -1 d = 1 (B/B 1 )2 dx (14.195)

0 0

The variations of B and aeff may therefore be regarded as a "scaling" of the

length parameter x; that is, the value of which is required to obtain a given

pressure drop is equal to the length x required to obtain the same pressure drop

in a generator in which the magnetic field and effective conductivity remain

constant. Decreases in either the magnetic field or conductivity increase the

length x required to obtain the same pressure drop.
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In spite of the variable conductivity or magnetic fields, (14.19 ) may be

used to define an "interaction length" L, which is the length in units of t for

which the exhaust pressure is much smaller than the inlet pressure pi, and

hence may be neglected. Thus,

L = 1 2 (14.196)
(1 - K) (eff B )I u

The interaction length is therefore a measure of the length of the MHD generator

which is required to obtain a large pressure drop; that is, an appreciable tem-

perature drop of the gas. Note that L is different than the magnetic interaction

parameter I which was defined in order to compare the magnitude of the Lorentz

force to the friction pressure drop.

(i) Optimum Inlet Mach Number, Constant Velocity Generator

Now if L as calculated from (14.196) is large compared to the trans-

verse dimension of the generator, then it may be desirable to change the

inlet conditions to decrease the generator length: the most convenient

method for accomplishing this being to change the inlet Mach number,

e.g., the inlet static temperature. The interaction length L is a minimum

when the derivative of p1 /(cr ef f u) 1 is set to zero. For example, we may

consider a segmented electrode generator with thermal ionization.

Neglecting electron-ion collisions, and letting the collision cross sections

be constant, the scalar electrical conductivity is:

e2 T3/4 exp (- E./2kT)(
a =  Qp1/2 1/2 (14.197)

Sf8-me <  (ns/n)

where it is assumed that the degree of ionization of the seed material S

is small. The gas velocity u is given by:

u = V_2C (T -T (14.198)
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The inlet static pressure is given by:

p T) (14.199)

0 0

Substitution of (14. 197-199) into (14. 196), differentiation with respect to

T1 , and equating the resulting expression to zero yields the following

expression for T 1 for which L is a minimum:

T 4.~ + J02 2 Ot,+ 2 +±
T 1 1 1 1 3 (14.200)

T 2($ -)

where

1= 1 (a)
y -1 2

Ei
E -

(b)
1 UkT

0

The results of applying (14.200) is shown in table 14.3, for two typical

gases: combustion gases, for which y z 1. 20, and inert gases, for which

/ = 5/3. These results indicate that the minimum length is obtained for

combustion gases when the flow is supersonic, while for inert gases, sub-

sonic. It is to be expected that the optimum Mach number is less for inert

gases than for combustion gases because the temperature of the former

decreases more rapidly than the latter as the gas velocity increases.

For magnetically induced ionization, as the Mach number is increased,

the conductivity increases up until ion slip begins to decrease the electron

temperature, hence (14.200) may not be used in this case. Also, (14.200)
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Is not a useful criteria if the pressure drop due to Lorentz forces is

small compared to pl; or if the interaction length is already sufficiently

small. In this case, one may wish to optimize the power density

K(1 - K) a u2 B 2 . Then, for thermal ionization, constant collision cross

section, and small ionization, the optimum inlet static temperature T 1 is

given by:

T1 2 + a 2 
+  V(82 + &2) 2 - 4 ( B -1 a)2

T 2(22 1) (14.201)T 2(s 2 - 1)
0

where

-E.

82 - 2 (y-1) 4; 2 2kT
0

The results of (14.201) are also shown in Table 14.3. Note that the

optimum inlet Mach number for combustion gases is now subsonic, while

the optimum Mach number for the inert gas is increased only slightly.

TABLE 14.3. COMPARISON OF OPTIMUM INLET
MACH NUMBERS

E. = 3.87 ev
1

T = 3150 K

Length Power Density

Gas: T 1 pn 1

Combustion 1.2 1.36 0.81

Inert 1.67 0.55 0.60
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(ii) Effect of Variable Conductivity

To illustrate the direct integration technique with variable conductivity,

consider a thermally ionized gas whose electrical conductivity is given by

(14. 197), which may be represented as follows:

E. (1T\)1 1- i

a ~P ) ~ 1/2 1k
( 1 /4 e 1 (14.202)

act

It is convenient to use an expression as complicated as that given by
A

(14.202); to simplify the analysis, let:

V

a ( T (I) (14.203)

where w, v are exponents which are obtained by matching with (14.202),

that is:

1
V 2

E2TT (14.204)3 2kT1 T_

4 + n (T/T 1 )

Although W varies with temperature, the variation is small, and the tem-

perature T in (14.204) may be chosen at some average value. With the

variation of conductivity given by (14.203), either the momentum equation

(14. 192) or the energy equation may be integrated; to illustrate this,

consider the energy equation (for constant velocity):

uC dT K(I - K) c uB 2  (14.205)
pdx
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Use of the perfect gas, (14.190), and (14.203), (14.205) rece-S +C;
A

(T) ' dx() (14. 206)
T~ I-x X*

where

VPl

(y - 1) T1 K(1 - K) a1 B2

Equation (14.206) then integrates immediately to:

TW 1+ , (14.207)

and with the use of (14.190) the corresponding pressure ratio is obtained.

To illustrate the use of the scaling law, we may integrate (14. 195)

with constant magnetic field. From (14. 194), (14. 190), and (14.203), the

conductivity as a function of is given by:

K - v

1  p1  (14.208)
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integration of (14.195) then yields:

V + 1 K

1 - ,1 u x (14.209)

which is the required scaling relationship. Successive substitution of

(14.209) into (14.194) and (14.190) then yields the same relation (14. 207)

as obtained by direct integration.

Other examples of direct integration are given in reference 20, which

includes the effects of electron-ion collisions, and the Hall reduction in

conductivity. The resulting expressions are generally more complex than

(14.207). The constant velocity case with thermal ionization and constant

collision cross section was 4kist integrated by Brocher 2 4

(iii) Generator Efficiency

The overall generator adiabatic efficiency is defined as

T
1-

T -T T
o7 T 0 T 3 0 (14.210)

0 3 1-3
T

0

where it is assumed that the specific heat of the gas is constant, see

Figure 14.28. Now,

T 3  T 3 T2 T1

T - T2 T T (a)
o 2 1 o
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"he path 0-1 occurs in the nozzle, and is close to isentropic. The

path 2-3 occurs in the diffusor; this is actually not isentropic since all

diffusors have an entropy loss. However, for the present purposes this

path will be considered isentropic the effect of diffusor losses is given in

r f. 37 . Thus, for paths 0-1 and 2-3, the temperatures are related

to the pressures by the isentropic expressions so that (a) becomes:

T T p(b)

If K is constant for the entire generator, the relation given by (14.190)

may be used as follows:

T 2 P2 ) K(Y - W1)/v
T1 P(c)

Substitution of (c) into (b) yields:

T 3 (Pl) 1-KP3]

1-K p3 (d)

Next, it is necessary to express the static pressure ratio across the

generator, p2 /pl, in terms of the desired stagnation pressure ratio p3 /po .

We may write

P3  P3  P2  P1- - • .- • . (e)
PO P2  P1  PO
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The first and last pressure ratios are given by the following isentropic

relations:

P1  1(f

PO [1+ 2 Y /-(f

p 1 + (g)
P2  2 22

Also,

7n2 u 2 u T1 2 p
2 y RT 2  yRTI T 2 p2

Substitution of (f, g, h) into (e) yields:

_ . _

PO _ p 1 ( j (14.211)
P~o 1 +~ ~ in.. p - i p1 iem f eie

Unfortunately this is an implicity relation for p2/Pl in terms of the desired

stagnation pressure ratio. Thus for specified values of y,,IL 1, and K,

(14.211) must be solved numerically to obtain (p2 /pl). The alternative,

of course, is to choose (p2 /P 1 ) and solve for p3 /P.
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Finally, T 3/T is given by the isentropic relation:

T - (14.212)

0

With the use of (14.210, 14.212) in (14.209), the efficiency beomes:
A

1-K 1 '

7 0 (14.213)

(P3PO

where (p 1 /P 2 ) is related to p3 /P0 by (14.211). When K becomes very close

to unity, 7--.) 1 as expected. However, with K less than unity, the effi-

ciency may still become close to unity if the pressure ratio p 3/P is

sufficiently large. This is the familiar, internal reheat of turbomachinery -

in the case of MHD generator, the ohmic heating is passed downstream and

is available for conversion into electrical power. This effect may also be

attributed to the "spreading" of the pressure lines on the temperature-

entropy diagram: At very low pressures, a large entropy change causes

only a small change in temperature. The various efficiencies are shown

in Figures 14.29, 14.30. In Figure 14.29 the value of 2 & 21 << 1,
'Y 1

and the local efficiency 7L and polytropic efficiency p are both equal to the

loading factor K. But as the pressure ratio p3 /p is increased, the generator

efficiency becomes greater than K.

The situation is not nearly as favorable for large values of the Mach

number; in Figure 14.30 the various efficiencies are shown for
2

1/2 (y - 1)71 1 = 1. The polytropic efficiency is now much less than
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Figure 14. 29. Frictionless Adiabatic Efficiency, Crossed-Field
MI-D Generator, Constant Velocity, M << 1.
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the loading factor; and the overall generator efficiency is only slightly

better than the polytropic efficiency.

The variation of the cross-sectional area is obtained from the con-

tinuity equation; thus

A __i1 T(x)
A1  p(x) p(x) T1

K(- - 1)

- (14.214)

Generally, the smaller the inlet Mach numer and the larger the value ofA19
y, the smaller the area increase. For continuous electrodes, each of

which is maintained at the same potential, the interelectrode spacing h

must remain constant, since u and K are both constant. This means that

all of the area increase must be in the direction of the magnetic field.

Another disadvantage of the constant velocity generator is that the local

Mach number at the exit is higher than at the inlet, due to the decrease in

static temperature. This increases the problem of pressure recovery in

the exit diffusor, especially if the exit Mach number is near or greater

than unity. For this reason it is desirable to consider other flows in which

the exit Mach number is equal to, or less than, the inlet Mach number.

14.6b Constant Mach Number Generator

If the Mach number of the gas flow in the generator is kept constant, then

as electrical power is extracted from the flow, both the gas velocity and static

temperature of the gas will decrease. For this case, the momentum and energy

equations become:

puu'+p' = -(l-K)effI  2 (a)
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pu (C T' + uu') = -aK (1 - K) aeff B (b)
p ef1u

where ' indicates d/d . The local Mach number is defined as:

2
yRT (c)

Since the Mach number is taken constant, (c) may be differentiated with respect

to x, which yields:

uu' =  A2 yRT' (d)

Substitution of (d) into (a) and (b); then division of (a) by (b), and rearrangement

yields:

p' [1 + 2 (1 - Kp T K -1 2

which can be immediately integrated to obtain the following first integral of

(a, b):

Y 1 1 + 1 (1 - K ) ( y- 2]

p I (T) (14.215)

Since the polytropic efficiency is given by:

K

p + -K)(_-I)% 2
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then (14.215) can be rewritten simply as:

Y
(-i1) 77p

pt T1 (14.216)

Since both the Mach number and loading factor K have been assumed constant

for this generator, then Ip is also constant.

To obtain the variation of temperature or pressure in the direction of

flow, (14.216) is substituted into (a) and integrated, which yields:
A

1 2  [ ( (-1) p -2

1 7 -1 I
2 itp T

(12.217)

B2
(I - K) CeffI uB

Pl

Equation (14.217) gives the length in units of ; however, (a) can be integrated
directly for the case of variable conductivity of the form given in (14.203), since

the pressure can be expressed in terms of the temperature by means of (14.216).

Because the Mach number is constant, the stagnation temperature ratio is
equal to the static temperature ratio. Thus, the overall adiabatic efficiency

(neglecting friction) is given by the following expression:

Upi ( - 1)/y
1 P3)

77 1 ( )/ (14.218)

P3
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which is identical to that for the constant velocity generator when 1 (Y %) 2

<< 1. In fact, for moderate pressure ratios the performance of the constant

Mach number generator is identical to the constant velocity generator, even for low

supersonic Mach numberl

14.6c. Constant Temperature Generator

In the constant temperature linear MHD generator, all of the electrical

energy is extracted from the kinetic energy of the flow. The maximum energy

is extracted when the exhaust velocity is very small; the fraction of energy

removed from the gas is then:

T -T 7- 1 2
o 1 2 1(a)
T 1+ Y 1 2

2 1

Thus, to obtain an appreciable energy extraction from the flow, the flow Mach

number at the inlet should be greater than unity, depending on the value of V.

The constant temperature generator has, however, the advantage that the exit

Mach number is always less than the inlet Mach number, thus reducing the

diffusor losses. In fact, the theory indicates a throatless transition from

supersonic to subsonic flow may be possible, although this has not yet been

proven.

The quasi one-dimensional equations for constant temperature flow are:

Momentum

P U fK B2 (a)RTuu'+p' 1eff -K)uB

Energy

P uu' = K(1 - K) uB2  (b)

RT eff
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Subtraction of (b) from (a) yields:

2 2
S eff (1 - K) uB, (c)

then division of (b) by (c) yields:

pu du/dx K(d)
RT dp/dx 1 - K

which may then be integrated to obtain the first integral by noting that (du/dx)/

(dp/dx) = (du/dp). The result is

1-K 2 22KRT " (u 1 2 - u)

P- = e 1 (14.219)Pi

To determine the variation of velocity with t, the energy equation (b) may be

integrated by use of p = p/RT 1 , and substitution of (14.219). The resulting

expression is

1 1-K Y 2

- 2 2K 1 2
1_exp [(K_,)V9?2 ~ e C dC[K(1- K 1ej

1-K w2 2

2K2

= (1-K) aef u1 B2 4/P 1  (14.220)

If the electrical conductivity varies in a manner given by (14.203), the

integration may be easily performed to obtain the variation of the velocity with

the physical length. 
2 5
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The adiabatic efficiency is given by

2 2Ul u 2 )- 1 "/ 22 22 2- 2 1 1(2/Ul2)

=7 Cp(To -T') + -2 1/l 12 1 -(p3-/Po)y- i/v

(14.221)

Now the stagnation pressure ratio is given by:

P3 P3  P2  P1.. .. .(e)
PO P2 P1  Po

The first and last factors in (e) are given by the isentropic relations, so that (e)

becomes

V

PO Pl 1 + -Y-1 2'
2 1

Use of (14.219) for p2/Pl and OM 22 =u 2 2 u12M 1inftesanto

pressure ratio is given by:
2 

-

Useof 14219 fr p/p 1 an "2~ 2 ( 2 / 1  + in (f th stanaio

(1i-K) Yp3  2K "12( u2 2) + 2 1 u12

(14.222)
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Thus, with the inlet Mach number and stagnation pressure ratio chosen, (14.222)

is used to obtain the velocity ratio u 2/u , which is then substituted into (14.221)

to obtain the efficiency. Figure 14.31 shows the results of such a calculation,

for
v-1

(pp 05ad1 2 1,
(p3/ / 0. 5 and I (Y-1)Iz 1  =

so that the isentropic velocity ratio, u 2/u 1 for K = 1, is zero according to

(14.222). Note that the efficiencies are quite close to K.

The variation of efficiency for K = 0.9 with stagnation pressure ratio is

shown in Figure 14.32. It may be seen that large pressure decrease the

efficiency markedly. This is due to the high inlet Mach number associated

with large pressure ratios, which causes a large decrease in the polytropic

efficiency. Thus, the constant temperature magnetohydrodynamic generator

is not suitable for very large pressure ratios.

14.6d Constant Pressure Generator

As can be seen from the temperature-entropy diagram, Figure 14.28,

if the local static pressure is kept constant, the local static temperature will

increase. Thus, only a part of the initial kinetic energy is converted into

electrical energy; the remainder is converted back into thermal energy of the

gas. This may be of some advantage if the gas is thermally ionized since the

electrical conductivity will increase in the downstream direction. Also, by

converting the kinetic energy back into thermal energy, the generator acts as

a diffusor.

For this generator, the momentum and energy equations become

respectively:

puu' = -a eff (1-K) uB 2  (a)

(T' + uu') =- _ U (1-K)uB2 (b
P (Cp effK - (b)
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Subtraction of (a) from (b) yields:

p T' = ae ff (1 -K) 2 uB 2  (c)p effc

and division of (a) by (c) yields:

u du/dx 1 1
CdT/dx 1-K (d)

p

which may be integrated immediately to obtain the following first integral:

1(u 2 -u) = -(1-K) - 1 C (T-T (14.223)

To obtain the variation of velocity with distance, use the perfect gas law

to eliminate the density from equation (c), and then eliminate temperature with

the use of (14.223), as follows:

d(u/u 1 ) -1) ( - K) 2 B2 (e)

-2 = 2 P l eff ( u1d

1 1

where:

m2 1+ 2
(1 -K) (y - 1)/12

Integration of (e) then yields:

1 1I1 tanh - 1  1- tanh- 1  =/ 1- 1 CY (1 -K) 2 u 1In In In 2yPl effl1

(14.224)
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The physical length can also be obtained for variable electrical conductivity by

expressing (e) in terms of temperature instead of velocity, since the conductivity
25

will also depend only on temperature because the pressure is constant. The

adiabatic efficiency (neglecting friction) is given by:

T

T -T
T 0- T 3  1=

o 3 oy

0)

Now,

2-2:p3  _ 3  p 2 2 )
PO p2  P =(1 + ___ 2(1)

since p1 
= P2. Rearrangement of (g) yields IR 2 in terms of the stagnation

pressure tatio:

Y-1

3(1 + 2_!-

2 2 =( ) I Y- 1 (h)

2(V-i)

The temperature ratio can be expressed in terms of the Mach number as

follows:

T T T T 1+ V-1d) 7 2 T
3 3 2 1 2 2 T2 (i)

T 0 T 2  T1  T 0 1+ 1 2 T1 (i)
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From (14.223),

T 2 (1- K) (-1) o 222 T 2

T1 1 1+ 2 12 1l 1 2 T\1

Equation (j) may be solved for T 2/T 1 as follows:

T21

T 1+ (1-K) (V-1) 2
2 _2 JI 1 (k)

T 1 1+(1 -K) (Y -1) a) 22 2

Substitution of (k) into (i), and substitution of a 22 from (h) yields:

T 3  P3  1+(1-K) 1 -1

T0 PO0
V

K +(1 -K) [1+ V-i1r/ 12]( p3)
0

(14.225)

Substitution of (14.225) into f yields the desired expression for efficiency, in

terms of am,,f , K, and the stagnation pressure ratio p3 /po .

14.6e Constant Cross-Sectional Area

For the purposes of performing experiments on magnetohydrodynamic

electrical power generation, the most convenient channel configuration is a

straight, rectangular duct of constant width and height, and hence constant area.

The performance will then depend on whether the electrodes are continuous or

segmented. If continuous, the voltage difference between the two electrodes

will be constant, and hence the electric field will be a constant. This causes
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the loading factor K to vary along the length of the generator, so that the bco. 1

conversion efficiency varies. In fact, it is possible to have one part of the

duct acting as a generator while some other part is acting as an accelerator.

On the other hand, if the electrodes are segmented, then the voltage

difference between pairs of electrodes need not be constant, and can be made

proportional to the local velocity by setting the ratio of the external load resis-

tance per unit length to the internal resistance of the generator per unit length

equal to some constant.

For either configuration, the flow Mach number tends toward T 1. If

the flow was initially subsonic, the temperature decreases while the velocity

increases. Thus, additional thermal energy is converted into kinetic energy

which is not recoverable in the generator. If the flow was initially supersonic,

the velocity will decrease and temperature will increase, so that some thermal

energy cannot be converted. For these reasons, the constant cross-sectional

area generator does not appear to be practical. In fact, in multiple stage gas

or steam turbines the flow cross-sectional area is always increased in the

downstream direction in order to limit the axial velocity. It is found that for

all of the previous cases in this chapter, the cross-sectional area increases in

the downstream direction also. However, because the constant cross section

generator is simpler to design and construct than the others, the theory is

included here.

The basic equations are:

Conservation:

u = pl ul (a)

Momentum

du + 7 B (E - uB) (b)
u + dx =eff
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Energy

pu d CpT+ -u = ffE (E- uB) (c)

where E is the constant transverse electric field, taken equal to its value at

the inlet. It is convenient to reference this value of the electric field to the

inlet velocity t, -5 4 okkowS;

E = K1 u 1 B

Thus K1 is a constant for the generator. This definition is different than the

one used in previous sections, where the electric field was referenced to the

local velocity. It is also convenient to let CPT = [y/(y- 1)] (p/p), and to

make the equations non-dimensional by letting

U = u/u 1

P = P/P 11 2
1

(d)
X=x/h

B2

aeffB h

Then equations (b, c) become:

dU ~dP (426
qdX + dX - I(K l - U )  (14.226)

d- -- PU+I U 2 1 = I(K1U) (14.227)
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Equations (14.226, 14.227) have been integrated2 6 ,27 by first eliminating

I(K - U) between them:

d 'PU+I"U2= K +- K,dX yi 1 2dX dX 1

This is integrated immediately as follows:

V7 1U2
Y PU + I = K1U + PK + constant (e)
-i1 2 1 1

At the inlet, U = 1, and P = P1/Pl U1
2 = (7M 1 ) ; which allows the constant

in (e) to be evaluated. Rearrangement of (e) then yields the following first

integral:

1 2_ 1U+ + 111

P = 114.228)
K1 - _1 U

To obtain the variation of velocity with distance, the left side of (14.227) is

expanded, and (14.226) and (14.228) are used to eliminate (dP/dX) and P,

respectively. Rearrangement yields:

K + - 1)2  ( -

II_+ 1 21 U 1 - Y U - 1 1_. _

- I 'y - 1 K Y1  K

+ (Y -1) 2 [K - 2 1 A- - u
2 2 KdU 2

+ 1 (~ )i- 2  1] ~~ K1 I

144I
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where:

6 1+ K-1 (g)

+ (y2 2 IM 1 2] _ 1

If the effective conductivity is assumed to be constant, then the interaction

parameter I is also constant, and (f) can be integrated to become:

2 + 1) 2 -,(Y ) K
K+ 2 K

1  ( 1
+ -K 1  2 y (/'+1) + K 1 6 V(y-1)Ln 1-

L (Y -1)K1

v-1
2 2I~ 2 /+1

+ I'±1)-1 2 ( I-I)K1 _= K1 IX (14.229)

The length required to reach ) = 1 has been calculated in reference 272

and is shown in Figure 14.33. It is seen that the higher the initial load factor

K1 or the lower the inlet Mach number, the longer the generator length.

Also, high loading factors or low inlet Mach lead to the largest electrical

energy extraction from the flow, as is shown in Figure 14. 34. On the other

hand, the largest average power density is obtained when K 1 0.5, for any

subsonic inlet Mach number. 2 7

For the second case, in which segmented electrodes are used so that the

local transverse electric field is a fixed fraction of the local value of uB, the
20

corresponding first integral is given by:
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1 K(Y -
1)

and the variation with length is given by:

B2

(1 -K)aeff 1 B 2B - (Y - ) y

Plu1  2y -K(Y-1) u1  2y -K(Y -1)

2^ -K(y-1)

1 + 1-K 1K(

[Y12 - K \U]

(14.231)
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14.7 ALTERNATINQ CURRENT POWER GENERATION

For many applications it is desirable to have the output power of the

MHD generator as alternating current rather than direct current; in addition,

if ac induction generators could be made, the electrode problem would be

eliminated. However, there are two problems associated with induction

generators: first, it appears that they would have a poor power factor; and

second, if the power factor could be increased, the power density in the gen-

erator would be reduced.

The first effect, of poor power factor, can be estimated from the following

simple argument: The simplest method of generating ac power is to alternate

the imposed magnetic field at some frequency f. Now the magnetic field energy
2per unit volume is B /2A ; thus, the rate of circulation of magnetic field

energy per unit volume, PB' is:

Ps (a)

while the generated electrical power per unit volume is approximately:

P- 2 K(1 - K) (b)

Thus, the ratio of the circulating magnetic field power to the generated power

is

pB f (c)
o a u2K(l -K)

Next, a characteristic length L may be defined as the distance the gas will

move during one period:

_u

L- U(d)
f
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so that (c) becomes:

_B 1 1-B 
(e)

P K(I -K) 0 ucL K(1 -K) R m

where R is the magnetic Reynolds number. This ratio may be estimated with

some typical values: With a = 100 Mho/Meter, u = 103 M/sec, and f = 60

cycles/see, R I 2. The maximum value of K(l -K) is 0.25. Thus, the ratio

of circulating magnetic power to generated power is about 2, which means that

the power factor is poor. In addition, the circuit used for circulating the

current for the magnetic field must have a low ohmic resistance; otherwise

this circuit will consume all of the generated power.

14.7a Induction MHD Generator

The electrodeless induction-type MHD generator operates by means of a

traveling, alternating magnetic field, which induces currents in the gas. In

turn, this induced current creates an induced magnetic field which cuts

the field windings of the magnet. If the gas velocity is greater than the velocity

of the traveling magnetic field, the induced currents will be in such a direction

that the Lorentz force retards the flow; and in addition, there will be power

output from the field windings.

A very simplified analysis of the induction generator to illus-

trate its performance, see Figure 14.35. more detailed analyses

have been made. It is assumed that the generator channel is infinite in the

y-direction. The field coils are also in the y-direction, and are so excited that

the z-component of the magnetic field is approximately sinusoidal and moving

in the downstream direction x with velocity uB. The gas is assumed to have a

constant scalar conductivity, to be incompressible, and moving in the down-

stream direction with constant velocity u. Also, it is assumed that the induced

current loops close at y = +t -. In practice, this may be accomplished by the

use of an annular geometry.
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In the absence of a conducting fluid in the generator, the imposed mag-

netic field B is given by:
0

i2n-- (x - uBt)

B Re B* e (a)
z 0

0

where X is the wavelength of the magnetic field. In the presence of a conducting

fluid there will also be an induced magnetic field B , caused by the currents inZ.

the fluid which may be represented by: 1

-2-- (x - ut)
B Re B* e (b)

Z. 11

such that

VxB . = Uo Ji (c)

where ji is the induced current in the fluid. It is assumed that the magnetic

field is only in the x-direction, and the current is only in the y-direction. Then

(c) becomes:

,B

-p0 jV (d)

Use of (b) for B, yields:
Z.

1

i z 401 (e)

1 1
I 9



The induced current may also be obtained from Ohms Law. First, the electric

field in the y-direction is obtained from Maxwell's equation:

3E B
- z (f)x )t 1

Let i2T 
9

Lt * X (x - uBt) (g)

E = E e
y 0

i2nTi7T(x u t)
B B + B B* ek B (h)z z Z. z

0 1

Substitution of (g), (h) into (f) yields:

Ey = uB  (i)

Ohms law then yields:

jYi (Ey -uBZ)

7 (uB - u) Bz

= -(1-S) cu(B + B ) (j)Z. Z
1 0

where S is the slip, S u B/u. Equating the two expressions for the induced

current (e) and (j), one may solve for the induced magnetic field:

B
z

B (k)
z. i

1 - 2



where R is a magnetic Reynolds number defined by:m

R = 0oauX (I-S)/2r (1)m o

The total magnetic field is given by:

B
z

B =B + B - R (i)

z z. z 1+iR
1 0 m

and, from (i):

uB B z

E - o (n)y l+iRm

Now the current in the field windings may be related to B by means of Stokesz

theorem *a,"- Oe orea OLPS Avie (Aadid I,°e tv 'C. "i. %':

[Bzo(x) - Bz (x + Ax)] b = 2 0 Jyx ()

where J is the field current per unit length in the x-direction on each side ofY

the generator. Equation (o) may be written as:

z 2u J
0 _- (p)

Ax b()

Thus,

i 2 rib
J B (r)y 2 g 0 X z °
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Now the complex power per unit length and width delivered to the upper or1,-
lower field windings is given by P* E_ J , where E is the complex con-

2 y y y
jugate of E . Thus, the total power per unit volume is:Y

2

p*_ EJ - UB (14.232)
2 y y A 0 A+R 2

0m

where equations (n, r) have been used. The real power is given by the real

part of (14.232) while the reactive power is given by the imaginery part of

(14.232). Equation (14.232) thus clearly illustrates that the reactive power is

larger than the actual power when R n< 1. To increase the power factor, Rm m

must be increased, but then the power density will decrease for R > 1.m

Equation (14.232) may also be compared to the direct current generator by

substitution of (1) for R in the numerator:
m

222
I+R

m

Thus, the slip velocity S replaces the load factor K. The factor of is caused

by the sinusoidal variation of power output, as is usually associated with alter-

nating current power. Equation (14.232) clearly shows that increasing the

magnetic Reynolds number will decrease the power density. However, it is

unlikely that magnetic Reynolds numbers in excess of unity can be achieved, so

that the main problem is the power factor. From (14.232), it is seen that the
-1

phase angle between the voltage and current is given by e = tan R -1; morem

detailed analyses have verified this poor power factor. 2 8
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14.8 MHD POWER CYCLE ANALYSIS

In the previous sections, methods were presented for calculating the

performance and efficiency of various magnetohydrodynamic electric power

generators. These methods allow for the calculation of the decrease in total

enthalpy in the generator, the pressure drop, and the equivalent turbine

efficiency. In the present section, it is assumed that this performance can be

calculated, and it is now desired to determine the overall efficiency of a gen-

erator system.

There are three general types of MHD generator systems. In the simplest

system, liquid or solid fuel and liquid oxidizer are burned, seed added, and the

resulting gas mixture passed through the generator with no further recovery of

the remaining thermal energy or seed material in the exhaust gases. Such a

system is feasible only for small or short duration generators. Since the

amount of energy required to pump the liquid (or solid) fuel and oxidizer is

small, all of the generated electrical power. is available for the load except that

required to energize the magnet, if it is an electromagnet. This system will

be discussed further in section 14.8a.

For the generation of bulk power, fossil fuel must be used for economic

reasons, and the oxidizer must be air, although some enrichment with addi-

tional oxygen may be possible. In order for the combustion temperature to be

high enough for thermal ionization, preheating of the incoming air is necessary.

The exhaust temperature of the gas from the generator is determined by the

decrease in the ionization of the gas; but because combustion gases must be

thermally ionized, the exhaust temperature is still very high. For economic

operation further extraction of this energy is necessary, which may be accom-

plished by using the exhaust gases to generate steam power. These systems

are described further in Section 14.8b.

Finally, the gas which passes through the generator may be in a com-

pletely closed cycle; that is, the gas (or vapor) is heated in a heat exchanger,

expanded through a nozzle, passed through the generator, cooled, and
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recompressed (or pumped) back through the heat exchanger. For such a cycle,

the maximum temperature of the gas is set by the allowable working tempera-

ture of the materials in the heat exchanger. At the present state of development

of refractory materials, it is highly unlikely that sufficiently high temperatures

can be sustained over long periods of time to permit thermal ionization; thus,

some form of non-thermal ionization is necessary.

At present, the main use for such closed cycles appears to be for vehicle

power. The most interesting potential application for such cycles is for the

generation of electrical power in space where the heat rejction must be by

radiation. This is described in Section 14.8.c.

14.8a Simple Open Cycle

In the simple open cycle fuel and oxidizer, without preheating, are burned,

and "seed" material is added. The combustion products are accelerated by a

nozzle and passed into the generator and exhausted into the atmosphere. Since

seeded combustion gases are not sufficiently conducting below about 4000F at

a pressure of one atmosphere, the flame temperature must exceed 40000F in

order to extract any electrical power. Since the temperature of most flames

with air is below 4000 F, it is necessary to use either pure oxygen or a

chemical oxidizer. Even if pure oxygen is used the flame temperature with

ordinary hydrocarbons is not especially high due to dissociation of the products

-of combustion, see Table 14.4.

The overall efficiency for this type open cycle generator can be expressed

in terms of the enthalpy difference between the flame temperature and ambient:

Net work/unit mass of gas
t H -h

o a

where H is the total enthalpy of the products of combustion at the combustor0

pressure, and h is the sensible enthalpy of the same gas if cooled to ambient
a
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pressure and temperature. The net work is the difference between the gener-

ator inlet total enthalpy and the exit total enthalpy, less any heat transfer, and

power for auxiliary equipment. Thus,

H -h 2 - u2/2 -Q-P

O 2 2 aux
77t= H -h

0 a

The thermal efficiency is therefore limited by the minimum temperature Tm

at which there is sufficient ionization, and by the exhaust velocity. If the

exhaust velocity is reduced by adjusting the cross-sectional area, then addi-

tional energy can be extracted from the gas before Tmin is reached; however,

decreasing the gas velocity generally increases the generator length. For this

reason, it is desirable to use the higher flame temperatures.

TABLE 14.4. FLAME TEMPERATURES OF FUELS BURNED
WITH LIQUID OXYGEN AT 20 ATM. PRESSURE

Fuel Flame Temperature, 0F

*Ethyl Alcohol 5250

*Kerosene 5570

*Hydrogen - 5400

*Methane 5040

Cyanogen - 8200

*From Rocket Propulsion Elements by G. P. Sutton, 2nd Edition, John Wiley

and Sons, Inc., 1956, N. Y.

Also listed in Table 14.4 is the flame temperature with Cyanogen, C2N2 . The

high flame temperature results not so much from a larger heat of combustion,

but from the fact that the products of combustion do not dissociate as in hydro-

carbon flames; that is:

C2 N ?t 02--) 2 CO + N2
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Detailed calculations of the performance of an oxy-cyanogen generator

indicate that over 36% of the input chemical energy can be converted into ter-

minal power. This is to be compared to about 15% for hydrocarbon fuels.

With an initial total pressure of one atmosphere, K = 0.5, % = 0.9, and

segmented electrodes, only 10 cm. of length is required to obtain the overall

efficiency. The magnetic field was 2 webers/M 2 at the inlet and 0.45 at the

exit. Because of this short length, it is necessary to have a small cross-

sectional area in order to have quasi-one dimensional flow. For an inlet area
2 2

of 1 cm , the exit area is 63 cm , and the total generated power was 10.87

kilowatt. No magnet power was required because it was assumed that the mag-

netic field was supplied by a permanent magnet. For larger total powers,

larger inlet cross sections are required, and the length must be increased, but

this can be easily accomplished by reducing the magnetic field.

In these calculations, it was assumed that the seed material was 10% pure

cesium. Because of the high cost of cesium, this system is attractive only for

small units and short duty cycles. A cheaper source of cesium is pollucite ore

which contains 27% cesium. Certain potassium compounds such as the hydroxide

or carbonate are also relatively inexpensive. The halides are generally not as

suitable for seed materials due to the formation of negative chlorine atoms

which decrease the electron density.

(i) Magnet Power

A fraction of the output power may be used to energize an electro-

magnetic, instead of using a permanent magnet. To determine the con-

ditions which must be met for self-energizing the field coil, we may

examine the equation for the field current to the electromagnet, 1:

L dt + IR = huB (a)
dt

where R is the sum of the internal and external resistance. If it is

assumed that the magnet power is obtained from some fraction 0 of the

total length of generator J, then
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R h + 2N-L (b)yb a (7 W A W

where u and aW are the gas and wire electrical conductivities, respec-

tively, N is the number of turns of the field coil, h is the transverse

distance between electrodes, and b is the transverse distance in the

direction of the magnetic field, see Figure 14.36.

The magnetic field for an air core and iron core magnets are given

by respectively:

Air Core

t NI

Iron Core

B - t NI (d)

where X is the average length of the flux path for the air core magnet,

and b' is the iron magnet gap. Combining (a - d), it is seen that the

requirement for self-exitation wvIiI/L Llfidt 'C" Le .cie"

Air Core

+ < 1 (e)
js uba N W AwUh

Iron Core

b' 2 ? b'+ <k? 1 (f)
oubb t N ;W4 Aw uh
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Let us consider the air core magnet first. Equation (e) may be written as

1 1
+ <1(g)R v  R < 9

m m"i

where R ' and R In are modified magnetic Reynolds numbers defined by:*m m

Rm' = (y 40 ut) (aN) (b// ) (h)

m 2t i)

Now, the value of the desired magnetic affects both (h and i), because
A

increasing the magnetic field decreases the length of the generator. It

is easily shown that the left side of (g) is a minimum with respect tot

when R In= R ". Equating (i), (h) and solving for t, one obtains
m mn

2o Nb (j)

R n>2 (k)m

Substitution of (h, j) into(1, and rearrangement yields:

Air Core

A N> (1
C u a

*It is assumed that ion slip is negligible, and that the electrodes are

segmented.
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The left side of (1) is just the total cross-sectional area of the wire,

bh is just the average cross-sectional area of the channel, while Z 2 is

the average area enclosed by the magnetic flux path. The larger the cross-

sectional area of the channel, the larger f 2 will be. Hence, the ratio

(bh/ 2) is approximately a constant, and is independent of the cross-

sectional area of the generator.

We may next determine the effect of generator size on the required

total cross section of wire, for a given gas velocity, and fraction of

power directed to the magnet a. Since the right side of (1) is a constant,

independent of cross-sectional area, the total cross section of wire is

also constant. Thus, the dimensions of the field windings are independent

of the generator power output, e.g., generator cross-sectional area.

Thus, air-core magnets favor large generators. For example, let

aW = 108 Mhos/M; u = 10 3 M/sec, a = 10 - , (bh/t 2 ) = 10 2 . For

hydrocarbon-oxygen flames, a z 30 Mho/M, and (1) predicts a minimum
2

wire cross section of 0.8 Meters . This large cross-sectional area of

wire makes it impractical to build generators with small duct cross -

sectional areas. For example, if we set an arbitrary limit that the

cross-sectional area of the generator duct must be at least (0.01 AW N,
2

then the minimum duct cross-sectional area is 80 cm .

On the other hand, if cyanogen-oxygen is used, with a conductivity of

about ten times larger, the minimum wire cross-sectional area is about
2

800 cm , which makes it possible to have a minimum duct area of about
2

8 cm

A similar analysis can be made for iron core magnets. Then (1) is

replaced by

A N 2 2 (m)0 W A 0° u a bh
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The minimum wire cross-sectional area is now much smaller, since,

for b - h, bt is only slightly larger than b; let us assume that b' = 2b --2h,

then the minimum wire area is reduced from the previous example by a

factor of 25, which becomes 320 cm 2 for hydrocarbons, and 32 cm 2 for

cyanogen. The cross-sectional area of the iron, on the other hand, is

directly proportional to the generator cross-sectional area, except for

very small sizes in which case sufficient space must be allowed for the

field coil windings. Thus, the weight of an iron core magnet is approxi-

mately directly proportional to the generator output, except for very

small sizes. This is in contrast to the cross section of the wire, which

is almost independent of generator size.

(il) Wall Losses

The two principal wall losses are skin friction and heat transfer.

Skin friction increases the required pressure ratio across the generator.

If the fuel and oxidizer are both liquid, the increased pressure ratio does

not appreciably affect the net power output because the pumping energy

for liquids is small. On the other hand, if the increased pressure ratio

is obtained by increasing the inlet pressure, then for thermal ionization,

the electrical conductivity will decrease and the generator length will

increase.

The other major wall loss is heat transfer, if it is necessary to

cool the walls. Heat removal reduces the enthalpy available for conversion

into electricity before reaching the minimum temperature at which the

gas is sufficiently ionized.

14.8b Open Cycle with Recovery

The previous open cycle is clearly unsuited for economic operation for

three reasons: the seed material is not recovered; chemical oxidizers are

expensive; and finally, the thermal energy of the exhaust gases is not recov-

ered. For the economic generation of power, for example bulk power, these

three problems must be considered.
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The cheapest available oxidizer is obviously air, although power is

required to compress it to the required combustion pressure. In addition,

common fossil fuels must be used if the fuel cost is to be minimized. Now, it

is impossible to burn fossil fuels, such as natural gas, oil, or coal, and achieve

sufficiently high combustion temperatures to ionize the seed material. Hence,

preheating of the inlet air is required to increase the combustion temperature;

that is, a regenerative cycle is required, 2 9 see Figures 14. 37, 14.38.

To design such a cycle it is first necessary to select the generator exhaust

velocity u2 , exhaust stagnation pressure p3 and exhaust temperature T 2* The

exhaust pressure should be high enough to allow the gas to pass through the

regenerator and any other heat-recovery equipment. The exhaust static tem-

perature should be high enough so that there is sufficient thermal ionization of

the seed material. From the Mollier diagram for the combustion products and

seed material, aad the diffusor losses, T 3 may be determined next. It is not

necessary to select the allowable temperature drop AT = T 3 - T 7 through the

regenerator. The smaller the value of AT, the larger will be the physical size

of the regenerator and vice versa. From the formulas of Section 14.6, the

generator may be designed, but since the combustion pressure has not yet been

selected, this must be done parametrically for various combustion pressures,

pO . The results may be plotted as line 0' - 3.

Next, for an air preheat temperature T the flame temperature, including

the seed material, may be calculated for various values of the combustion pres-

sure Pol. Some typical calculations are shown in Figure 14.39.

The calculated combustion temperatures may be plotted as T ,, as a func-o

tion of po'. The intersection of the 01 line and the 0" line gives the desired

combustion temperature and pressure. The compressor pressure p6 is then

selected, allowing for the required pressure drop through the cold side of the

regenerator. From standard compressor formulas, T 6 is then calculated with

T5 ' p5 selected at ambient. Finally, the regenerator hot-side exhaust tem-

perature is calculated from:

6 (h7 -h 6) = m 3 (h3 -h 4 )

-T"e Lti(4eresce bt_*weeA 4 S( C
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Now, because the specific heat of combustion gas is larger than that for air, the

regenerator hot-side temperature T will normally be considerably higher than
A 4

the regenerator cold-side inlet temperature, and additional energy can be

recovered from the exhaust gases, by producing steam and using a steam tur-

bine. It is possible to couple the turbine directly to the air compressor, and to

use any remaining shaft power to generate electrical power. The net power
A.

output is then the direct current generated in the MHD generator, plus any

remaining steam power, less the magnet power and auxiliary power. The dc

power is essentially ri, 3 (h - h 3 ), less any energy lost by heat transfer. (It is

possible, of course, to use the MHD generator coolant as the steam cycle feed

water heater.) With these types of calculations, overall thermal efficiencies

as high as 56% have been calculated. 29

Several problems in the cycle are evident. First, for combustion products

and about 1%molar potassium seeding, T2 is about 4000 0 F, and the regenerator

walls will then be close to this temperature. At the present time, economic

materials which will withstand this temperature for long periods of time are

not known (although some show promise for future development). 5  To reduce

the regenerator surface temperature, several possibilities have been explored.

First, T7 can be reduced, which wiil help lower the regenerator surface tem-

perature. However, this reduces the combustion temperature and the power

generated in the MHD generator. An alternate to this is to cool the gases from

temperature T3 by use of a steam superheater, before passing the gas into the

regenerator. 3 0 This also reduces the combustion temperature T .
o

A different solution is to reduce T as explained above, but to obtain the

same combustion temperature by enriching the inlet air with oxygen. 3 1 Although

this alleviates the regenerator materials problems, for a given mass flow of

combustion products, additional fuel is required to burn the additional oxygen,

which reduces the thermal efficiency somewhat; in addition, additional invest-

ment in oxygen separation equipment, and additional auxiliary power is required.

A more novel remedy which has been suggested is to use molten ash as
32

the regenerator, which is similar in concept to the "rotating regenerator"
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under development for gas turbines. The exhaust gases from the ME[D gener-

ator are used to heat ash until molten; the molten ash is then sprayed through

the compressed air In a counter flow arrangement. The ash solidifies as

granules, and Is mechanically recirculated to the exhaust gas heater.

A more practical method of reducing the regenerator temperature is to

use pollucite as the seed, in order to utilize the lower ionization potential of

cesium, and to use the higher field strengths that may become available through

the development of high field superconductors. The latter also has the advan-

tage that the magnetic field itself consumes no power; the only power consumed

by the magnet system is that required to recondense liquid helium to keep the

windings superconducting. With these two modifications, it has been estimated

that a reduction in temperature of as much as 7000 C can 6e expected. 3

Figure 14.39 also shows that for a given amount of preheat, the combus-

tion temperature varies with fuel. Although this is caused in part by the larger

specific heat of the combustion products containing water vapor, it is important

to select a fuel which yields the largest enthalpy change h3 - ho, for a given

MHD generator exhaust temperature T 2 and preheat temperature T In addi-

tion, the cost of the fuel should be considered. On these two bases, coal seems

to be the best fuel for economic operation of an MHD generator. On the other

hand, the high ash content of coal causes additional difficulties. Although it is

possible to remove as much as 90% of the ash in a "cyclone" burner, the

remaining ash becomes mixed with the seed material, which may be a potassium

compound or pollucite. Since economic operation requires recovery of the seed

material, this means that the 10% ash must be recovered as well, and recircu-

lated. To keep the "seed" makeup at a minimum, scrubbers and electrostatic

precipitators are required; but a more important problem is the large weight of

ash that must be recirculated through the system in order to make use of the

seed trapped in it. Way 34 has estimated that the ash recirculation is about one-

third the weight of the coal being burned! Thus, the physical size of the scrubbers

and precipitators becomes enormous. In addition, the molten ash will coat out

on the inside of the generator and will quite likely short out the electrodes.

169



Also, ash will coat out on the regenerator. Thus, the problems of burning coal

are quite difficult.

In addition to the problems caused by ash, there are two other important

problems associated with continuously operated generators. First, the potas-
46

sium attacks insulating materials and makes them conducting. Second, the

electrode materials - tungsten, carbon, or silicon carbide, are chemically

eroded by combustion gases. This last problem might be solved by using con-

sumable electrodes; that is, feed the electrodes continuously into the generator

in a manner similar to that used in electric arc furnaces.32

The largest problem that is faced by large-scale, continuous generation

of power by fossil fuel - MHD generators is economics. Although this system

shows promise of increasing the overall thermal efficiency to as much as 56%

as compared to 40% for conventional steam plants, the additional investment in

the magnet, generator duct, compressors, regenerator, scrubbers, precipi-

tators, dc to ac inverters if the ac is required, causes the plant cost of the

generated electrical power to be essentially the same as that for present day

steam plants. 3 0 For this reason, there is at present no major impetus to

develop large fossil fuel MHD generator plants in the United States. However,

in other countries such as Japan, England, and France, where the fuel cost is

much higher, and capital cost is lower than the United States, there may be

potential economic gain in the use of MHD power plants. For this reason,

research on the development of fuel-burning MHD generators is being actively

pursued in those countries.

If the cost of fossil fuel were to increase in the United States, then nuclear

power would become economic rather than fossil fuel - MHD, primarily because

of large successes in reducing the capital costs of nuclear plants in the United

States. 3 0 On the other hand, the capital cost for nuclear plants in other coun-

tries has remained so high that even with higher fossil. fuel costs, nuclear power

is not economically competitive. This situation can of course be drastically

altered by new innovations in technology.
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14.8c Closed Nuclear - MHD Cycle for Space

A third possible application for MHD power generation is a closed cycle

with a nuclear heat source. This appears to be especially attractive for the

generation of electrical power in space, where the heat rejection must be by

radiation, because the heat rejection per unit area varies as the fourth power

of the surface temperature 'Aa high temperature cycle is required to minimize

the radiator area. At present, high temperature nuclear reactors are under

development; but the corresponding development of turbogenerators is difficult

because of the combination of high operating temperatures, blade stresses in

the turbine, and the corrosive properties of some high temperature working

fluids, such as liquid metals. The advantage of the MHD generator is that the

stress level is reduced drastically. On the other hand, it is not likely that the

reactor temperature will be sufficiently high that thermal ionization of the

working fluid in the MHD generator will be possible; thus, some form of non-

thermal ionization will be required. Some other possibilities will be discussed

later in this section.

(i) Optimum Heat Rejection Temperature

The radiator for a space nuclear closed cycle represents a major

portion of the weight of such a generator system, and is also the largest

component in terms of physical dimension, which is cumbersome for

launch and also decreases the reliability of the system due to possible

puncture by meteoritic dust. For this reason, it is desirable to minimize

the radiator area. For a given output power and maximum cycle temper-

ature To, the radiator area depends upon the reject temperature. If the

rajct temperature is set too close to the heat input temperature To, then

the cycle overall thermal efficiency is too low, and the ratio of heat

rejected to useful power is large. Since the radiator area is proportional

to the total heat which must be rejected, the radiator area becomes large.

On the other hand, if the reject temperature is set too low, then the cycle

efficiency may be large, but since the heat rejection is proportional to the

fourth power of the rejection temperature, the radiator area becomes
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large again. Thus, there is an optimum rejection temperature for which

the radiator area is a minimum. We will illustrate this optimum by con-

sidering a simplified Rankine (vapor) cycle.

Rankine Cycle

The Rankine cycle is extremely attractive for space applications

because the heat rejection is at constant temperature, and the pumping

power is small, see Figure 14.40. The top temperature in the cycle is

To; the generator operates between 0 and 1; the working fluid is then con-

densed from 1 to 2 during which heat Qrej per unit mass of working fluid

is rejected from the space radiator. The liquid is then pumped from 2 to

3, and heat Qin is added bytthe nuclear reactor from 3 to 0. It is assumed

that there is no temperature drop through the walls of the radiator so that

the radiator surface is also at temperature T 1 . It is also assumed that

there is no radiation interaction between parts of radiator, or with the

spacecraft, and that the friction pressure drop is negligible.

Now the heat rejected is equal to the heat radiated, so that

mQrej = a eAT1
4  (a)

where m is the mass flow rate of working fluid, a is the Stefan-Boltzmann

constant, E is the total emissivity of the radiator surface (assumed con-

stant), and A is the total radiator area. From the first law of thermody-

namics, the total power P from the generator is given by:

P = m (Qin - Qrej )  (b)

and the overall thermal efficiency, ?7, is given by:

Qin - Qrej (c)- Q.
In
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Figure 14. 40. Rankine Cycle
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From (b) and (c), m Qin may be eliminated to yield:

Q P( (d)
rej 77

Now the efficiency for a Rankine cycle may be expressed as a fr ction 7c

of the Carnot efficiency for a Carnot cycle operating between the same inlet

and rejection temperatures, as follows:

= 7?c (e)

Substitution of (d, e) into (a) yields:

A*0 - 1 -. l 1 - (14.233)P 7 '?c

where A* is a non-dimensional area. For given values of e, To , and the

power level P, the radiator area is then proportional to A*, which is

given by the right side of (14.233). It is seen that as the overall cycle

efficiency becomes either zero or 77c, A* becomes infinitely large. To

determine the minimum value of A*, (14.233) is differentiated and set

equal to zero; the efficiency which then minimizes the radiator area is

given by:

5- /516 1c

77 - 8 (14.234)

and the optimum reject temperature is obtained from (e):

T 1  5 - 25- 16 77
- c-(14.235)

o c
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while the optimum value of A* is obtained from (14.233). These values

are shown in Figure 14.41 as a function of the Carnot efficiency. The

ratio (T I/T ) is a weak function of 77c, since it varies from 0.8 for c

= 0 to 0.75 for 7c = 1. On the other hand, A* depends strongly on 1c.

For typical Rankine cycles for space applications, fl 0.65, 77 z 0.15,

and (T 1/To)-- 0.77.

It is also possible to minimize the total weight of the entire space

power system, by utilizing the specific weight of the radiator, nuclear

reactor, and generator; such a study has also been made in reference 35.

However, for large generator system, the optimum temperature is still

between 0.75 and 0.8. At the present state of development of refractory

materials, it appears that the upper temperature for Rankine cycles may

be about 2500°R with a corresponding reject temperature of 1900°R.

These temperatures require the use of a liquid metal, such as potassium

or sodium for the working fluid, but are too low for

thermal ionization even with the addition of cesium, so that some form of

non-thermal ionization must be used. Calculations for magnetically in-

duced ionization, however, indicate that this may be possible in potassium

for relatively high field strengths, but low Mach numbers and total temper-

atures. A typical calculation is shown in Figure 14.42. Although this

effect is not yet confirmed experimentally, the high power density makes

magnetohydrodynamic generators with magnetically induced ionization

extremely attractive for space power applications.

Brayton (Gas) Cycle

The Rankine cycle as described above has one main disadvantage: to

operate at high temperatures, which is necessary to minimize the radiator

size, liquid metals must be used as the working fluid which are quite corro-

sive. On the other hand, an inert gas such as helium, which could be used

in a gas cycle, is not corrosive. Although the gas cycle has two disadvan-

tages for space applications; namely, the heat rejection is at a continuously

varying temperature, and a large compressor is required; nevertheless,
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it is of interest to calculate the radiator area for such a cycle, and com-

pare it to the Rankine cycle. The comparison can be made on two different

bases: for the same top temperature T in the cycle, the radiator areas0

may be compared; or for the same radiator area, the top temperatures

may be compared. For the gas cycles certain idealizations will be made,

similar to those previously made in the Rankine cycle; namely zero tem-

perature drop across the walls of the radiator, and zero friction pressure

drop which is valid for high pressure operation. The cycle is shown in

Figure 14.43; 0-3' - 4-5' is the ideal gas cycle, for isentropic compression

(4-5') and generation (0-3'). More realistically, the compressor and gen-

erator are not isentropic and have an entropy increase, shown as 4-5 and

0-3, respectively.

Since the temperature of the working fluid in the radiator is constantly

changing, we will write the radiator heat balance for a small amount of
1 1

heat rejection dQ which occurs between T - I AT and T + I AT. The
rej 2 2

differential radiator area dA required is therefore given by:

rndQrej = aeT 4 dA (f)

At constant pressure, dQ = C dT; then integration of (f) yields:P

.p .1 1 e 93= cA (g)

4 3

where the specific heat at constant pressure, Cp, has been taken constant.

Now the total heat rejected per unit mass of gas is given by:

Qrej = C (T3 - T4  (h)
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Use of (h, d) in (g) yields:

4 
T 

AT 
4-

A* -  o _T 4  ) (14.237)

where 77 is the overall thermal efficiency of the gas cycle, given by:

___ -rj-Tj T 3 - T4

Qin rej -- - 4=(i)

Qin Qin To - T5

If we let the compressor and generator adiabatic efficiencies be defined as:

5 ' - (T4

c - T 5_4

T 3 - T o

g T- 3 - T 0T3 o

Wlre T/Tr - T//T 4 ;
then it is easily shown that

T 3
1 ---

T 5  To0
T4 1+ T ()

17c g79-l+ TO
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so that (14.237) becomes:

4/4

A* T (14.238)

T T T + 1-

c (g+ )

From (14.238) it is seen that for a given value of To, the radiator area

depends on two temperatures, T 3 and T 4 , in contrast to the Rankine cycle,

in which the area depended only on the condensor temperature. The deter-

mination of the minimum radiator area is therefore more complicated.

The usual procedure used to determine the minimum radiator area is to

simply compute the area for various values of (T 3/T ) and (T4 /To) and36

locate the minimum in this manner. The results of such a calculation

are shown in Table 14.5, for two different compressor and generator

efficiencies. Note that the non-dimensional radiator area, A*, is very

sensitive to these efficiencies, and is much larger than the corresponding

values for a Rankine cycle. Note also that the values of (T3 /To) are 0.75,

which is similar to the result for an ideal Rankine cycle, while the heat

rejection starts at T3 and decreases to T4 . It is this large change in heat

rejection temperature which is responsible for the large radiator area.

The low values of T 4/T are required to obtain net power output; for an
4o

ideal gas cycle, then the minimization yields T 4 - T3; but when the com-

ponent efficiencies are less than unity, it is necessary that T4 < T3 in

order to obtain net power.
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TABLE 14.5. BRAYTON CYCLE FOR SPACE POWER

(a) (b)

7C = 77g = 0.8 0 = 7 g =0.85

A 145 84

0.15 0.15

T 3/T 0.75 0.75

T 4/T 0.3 0.375

T4/T 3  0.4 0.5

T5/T 4  1.57 1.50

T 3'I/T 0.69 0.70

po/P 3  2.55 2.4

COMPARISON TO RANKINE CYCLE
(To = 24600 R, A*= 16) FOR SAME RADIATOR AREA

T 42600 R 37300 R
0

T 3  31900 R 27900 R

T 4  12800 R 13950 R

T 5  20000 R 20900 R
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Column (a) was calculated by the minimization process; the values

in column (b) were obtained by minimizing T /T while keeping the cycle
3o0

efficiency the same. Note that for column (a), the overall cycle efficiency

is 15%, which is close to the Rankine cycle, which implies that for a

given power level, the thermal input to both cycles will be about the same.

Although the radiator area for the gas cycle is much larger than the

Rankine cycle for the same cycle maximum temperature, because the

gas cycle can use inert gases and avoid the corrosion problem, it may be

possible to operate the gas cycle at a higher temperature. Now, for the

same radiator area, (14.237) predicts that the top temperature T will0

vary as the one-fourth power of A*. Such a comparison is made at the

bottom of Table 14.5, where it may be seen that for 77c = ?g 0.85, the

top temperature is 37300 R. Although this temperature is quite high, it

may be possible to develop nuclear reactors for use with inert gases in

this range. This temperature is probably too high for the use

of gas turbines, but not for MHD generators.

A major problem with the gas cycle is that a gas compressor is

required. Since the gas pressure in the reactor is likely to be high in

order to minimize the heat exchanger surfaces, it is unlikely that a

magnetohydrodynamic compressor can be utilized, and an electrically

driven rotating compressor is required. If, for the example in column

(a), the electric motor for the compressor has an efficiency of 74%, then

all of the electrical output would be used to drive the compressor, and

there would be zero useful power output.

Of course, a magnetic field must be incorporated into a nuclear-

MHD space power system, which raises two additional problems, namely,

the weight of the magnet, and the rejection of heat from the magnet. Now,

most space applications for use with electrical propulsion will require

from one to twenty megawatts of power; from Section 14.81, the weight

of a copper wound air core magnet is prohibitively large, and the weight

of an iron core magnet is only slightly less. In addition, the heat
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generated in the windings must be removed by an additional radiator.

For example, if one allows 10% of the total power to energize the field

coils, then the entire power plant including its radiator must be larger

by 11%. The main radiator rejects 85% of the thermal energy (if the

overall thermal efficiency is 15%), and if the windings are operated at

the same temperature as the main radiator, then the additional radiator

load is 15%. However, since the electrical resistivitr :)f most metals

increases with temperature, and the size of the windings increases with

resistivity when the fraction of power consumed by the windings is held

constant, it may be desired to maintain the windings at some lower tem-

perature, and use a heat pump to increase the rejection temperature.

This reduces the size of the radiator for the wTindings, but additional

power is required for the heat pump.

The problems of the weight of the windings and the rejection of the

ohmic heating in the windings may be solved by the use of high field super-

conducting materials. The high electric current densities of supercon-

ductors reduce the weight of the windings, while the only required heat

rejection is that which is conducted into the magnet dewar, which tends

to boil off the liquid helium in which superconductors are kept. The

liquid helium can either be recooled by a cryostat which requires addi-

tional weight, power, and radiators; or sufficient liquid helium can be

stored to allow boil-off of the helium during the required mission time.

14.8d Other Gas Cycles

Intercooled

Since the radiator area, per unit heat rejection, decreases with in creasing

heat rejection temperature, it appears advantageous to start compression when

the working fluid reaches T 5 , with the compression divided into many stages

with intercooling by radiation between each compression stage. Ideally, this

may be represented as an infinite number of infinitesimal compressions, and

is a constant temperature line on the temperature entropy diagram, see

184



Figure 14.44. It is easily shown that if each compression stage has an adiabatic

compression efficiency ', then the rejected heat from the intercooler radiator

is given by:

Q11.Qrej 1

kQrej) ideal' c

where

Q I = T(S 4  5 C T 4n (P 4 ) '((Qrej)ideal -T$5 )= 4 (n)

From the definition of the generator adiabatic efficiency,

To -T3
o 3 T3 (p)

g =T- T3

the pressure ratio can be obtained:

Y 1 T

_ 7g +T
_37g 0 (q)

where it has been assumed that the pressure drops are negligible. Also

QinCp(T - T5 ); and Qr Cp(T3 - T5 )

The overall efficiency is

Q" + Qre
= 1- rei rj

Qin
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or, with the use of (m, n, q):

(-1+-

T3 T4 1 tn g7 +
T 0 T 0/7 7-7 TC (14.239)

1- --

T
0

In a similar manner, the radiator area can be expressed as:

C EAT 04 1 /T 4

A* - = n 1 -P 7 (T4/

3) _7 _1 +n T3
1T3 4 1C 9 Tg

3 T133g7T o)7g(14.240)

i T7 _ _-

T3 1g__ _

n-1 - ,n

In order to effect a comparison with the Brayton cycle, calculations have been

made with (14.239, 14.240), assuming that t7c = 7g = 0.8, and7 = 0.15. Then

(14.239) gives a relation between (T 3 /T 2 ) and (T 4 /To), and A* may be calculated

for various values of T 3/T o . The minimum radiator area, for these assump-

tions is A* = 220 as shown in Table 14.6, for which (T3 /To) 0.7, and

(T4 /T 3 ) ; 0.49. Compared to the Brayton cycle (a), the radiator area has in-

creased. This may be attributed to additional heat rejection due to intercooling

which requires that T 3 , and hence T 4 , be decreased to obtain the same efficiency.
r

This is the opposite effect of the usual effect of intercooling for gound based gas

cycles, where the lowest temperature in the cycle corresponds to the available
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cooling fluid; intercooling at the lowest temperature in the cycle decreases the

net heat rejection.

To investigate whether complete intercooling, as shown in Figure 14.44,

decreases the radiator area, a calculation was performed for 7c = 0.90.

The optimum temperature ratio is (T3 /To) = 0.5, but the radiator area is still

very large (A* = 144) as shown in Table 14.6, as compared to a simple Brayton

cycle for lower component efficiencies.

Another possible modification is the use of regeneration, see Figure 14.44.

Again, the radiator area depends on 77c9 17g, (T3 /T 0 ), (U4 /T 0 ), and the temper-

ature drop across the walls of the regenerator. Note that T5 and T 6 are fixed

by the other parameters. Calculations for minimizing the radiator area show
37

that a value of A* = 48 may be attainable, which further reduces the required

top temperature in order to achieve the same radiator area as the Rankine cycle,

see Table 14.6. However, the pressure ratio is small, p3 /p 1.75, which

simplifies the compressor problem, but which then requires that the pressure

drop in the regenerator be made very small. Now, the pressure drop in the

regenerator is inversely proportional to the product of the absolute pressure in

the regenerator, the.number of tubes, and the tube cross-sectional area. Thus,

to keep the regenerator small, high pressure operation of the cycle is required.

On the other hand, in order to achieve non-thermal ionization in the MHD gener-

ator, low static pressures are required, which then requires supersonic flow in

the generator with a supersonic diffusor downstream of the generator. Calcu-
37

lations of the losses associated with such a diffusor indicate that there is an

additional decrease of the generator adiabatic efficiency of about 10% which is

undesirable since it is necessary in a gas cycle that the generator (and com-

pressor) efficiency be as high as possible.

14.8e Two Phase Cycles

Of course, it is not necessary for the working fluid AL MHD generator to

be an ionized gas; it could for example be a liquid metal, or a mixture of gas or

vapor and liquid metal. Such a generator has the advantage of the very high
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electrical conductivity of liquid metals at all temperatures. The main problem

is~the conversion of the thermal energy from the nuclear reactor into kinetic

energy of motion of the liquid metal; normally a gas or vapor is used for this

purpose. This can be accomplished by mixing a hot liquid metal of low vapor

pressure with a cooler liquid metal of high vapor pressure. The hot liquid

metal causes the lower temperature liquid metal to vaporize. The mixture is

passed into a nozzle which allows the vapor to expand and accelerate the droplets

of liquid metal. The mixture is then separated, without appreciable loss of

kinetic energy or head of the liquid metal, and this head then forces the liquid

metal through the generator against the Lorentz force. One such possible
38cycle is shown in Figure 14.45. The lower loop for the liquid metal while the

upper loop is for the liquid metal vapor. The liquid metal enters the reactor at

9, leaves at 10, and is mixed with the high vapor-pressure liquid metal in the

"mixer," in which some or all of the latter liquid metal is vaporized, and ther-

modynamic equilibrium between the two streams is reached at 1. The entire

mixture then passes through the nozzle, where the vapor and liquid metal droplets

are accelerated, and enters the separator at 2. The separated liquid metal uses

the acquired kinetic energy to flow through the generator and reactor. The

separated vapor passes through a regenerator (heat exchanger), radiator where

it is condensed, a pump, and is then reheated by the regenerator before entering

the mixer. Calculations of the efficiency of this cycle indicate about 11% is

achievable if the mass flow rate through the lower loop is 100 times the mass

flow rate through the upper loop; 38 this means that the increase in temperature

in the reactor, T10 - T9. will be small. The high mass flow ratio of liquid

metal is required to keep the velocity of the mixture small in the separator since

frictional losses increase approximately as the square of the velocity. The high

mass flow ratio also precludes the use of a single fluid, since a single fluid if

expanded from the saturated liquid line to a temperature equal to about 3/4 of

the stagnation temperature will have a large mixture velocity, and hence, an

excessive friction loss in the separator.
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Besides the problem of friction losses in the separator, because of the

small temperature change in the reactor, the energy extraction per unit mass

flow in the generator is quite small, which results in a generator of extremely

small aspect ratio, see Figure 14.46, and hence large end losses in the absence

of inlet and outlet vanes; But if inlet and outlet vanes are used, these will

increase the friction pressure drop further. It is possible that there are other

geometrical arrangements for the nozzle, separator, and generator which will

have a smaller wetted surface area, and a more favorable generator aspect

ratio.

14.8f Heat Rejection to Propellant

One possible use for space electrical power is electrical propulsion. This

raises the possibility of using the reject heat from the space electrical power

system to preheat the propellant, and thereby avoid the use of a radiator. For

a regenerative cycle, the preheat heat balance is (see Figure 14.44):

m Qrej P\ 7/( h =r mC (T 6 -T) (r)

where T. is the initial temperature of the propellant, and m and C is the mass1 p p

flow rate and specific heat of the propellant, assumed constant. Also, it has

been assumed for simplicity that there is a negligible temperature drop between

the working fluid in the space power cycle and the propellant in the heat exchanger.

Now, the electrical power from the cycle is used to heat the propellant further:

this may be in a plasma jet, resistance heater or any other device; we assume

that the efficiency for this process is 100%. Thus:

P = mp Cpp (Top - T 6 ) (s)
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where To is the final stagnation temperature of the propellant. Also, for a

regenerative cycle,

C (T 6 - T5 ) T 51-= = 1- = 1- (t)
Qin C -T) T 0

since for a perfect gas cycle (To/T 3 ) = (T 6 /T 5 ). Division of (r) by (s), and use

of (t) yields:

T - (-T) (T 5 -i u

Now, to maximize the propellant stagnation temperature, Ti must be made as

small as possible, and (u) becomes TO Z T. Thus, the stagnation temperature

of the propellant is no higher than if the propellant had been directly heated by

the reactor! For fuel rod reactors, this cycle therefore has little advantage.

However, if the reactor were a gaseous nuclear reactor, which virtually pre -

cludes mixing of the propellant with the nuclear fuel, then this cycle has the

advantage that the fuel and propellant are kept separate, and also, much higher

temperatures may be achievable in a gaseous nuclear reactor than in a reactor

which uses solid or liquid nuclear fuel.

For fuel-rod cycles, this cycle may be improved by sending the propellant,
39

after preheat but before electrical heating, through the reactor. Then (s) is

replaced by

P = m C (TO -T ) (v)
p p

Following the same procedure as in the previous case (with T1 * 0),

T =2T -T 5  2T (w)o o 5 o
p
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Thus, the stagnation temperature of the propellant is almost twice that which

would have been obtained if the propellant were directly heated by the nuclear

reactor.

As previously mentioned, gaseous nuclear reactors may be capable of

higher temperatures than solid fuel rod reactors, but direct heating of the pro-

pellant is difficult, since the gaseous propellant must be separated from the

gaseous nuclear fuel prior to expulsion. Although vortex separation has been
40

suggested, it may also be possible to use an MHD generator for this purpose.

The working fluid consists of a mixture of propellant and gaseous nuclear fuel.

The nuclear reaction heats the entire mixture to a sufficiently high temperature

to ionize the gas, and the mixture flows through an MHD generator in which the

nuclear reaction is stopped and enthalpy is extracted from the mixture. The

temperature of the mixture is thereby reduced until the nuclear fuel condenses,

which is then extracted from the flow and recirculated to the reactor. The

electrical power which has been generated in the MHD generator is then added

to the propellant, which is now free of nuclear fuel, and exhausted from the

electrothermal engine. Such a system is interesting but highly speculative at

present.
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14.9 MHD GENERATOR EXPERIMENTS
2

The first MHD generator experiments were those of Halasz and Karlovitz,

which were carried out at Westinghouse up to about 1946, using electron-beam

ionization. Due to rapid recombination and formation of negative ions, the

generated power density was far below theoretical. No further experiments

were performed until about 1958, when experiments were initiated using thermal

ionization of seeded gases, see Table 14.7. The earliest of these experiments

utilized plasma jets as the method for thermal heating of the gas, since gas

temperatures could easily be obtained which are much higher than those avail-

able from combustion flames. 3,41 In these experiments, the measured electrical

conductivity and generated power agreed within a factor of two of the theoretically

predicted performance, although the total power was small (less than 12KW) and

the run times were less than 10 seconds. These experiments mainly verified

the validity of the physical principle of MHD power generation. A typical voltage-

current plot is shown in Figure 14.47.

The first combustion experiment was performed at Westinghouse Electric,4 2

in which over 10 KW was generated; followed rapidly by a similar experiment &'
43

MHD Research, and a much smaller experiment at the General Electric
44

Research Laboratory. These experiments also verified the theory closely;

however, the magnetic interaction parameter for these experiments was quite

small. The largest combustion experiment at the present time is the AVCO

Mark II, 45 which generated 1300 kilowatts in October, 1962. A Hall generator
46

has also been successfully operated on an air-hydrogen flame, with also

excellent agreement with theory. Combustion generation experiments have also

been performed in Poland, 4 7 and have been reported in the Soviet Union,4 but

details of the latter are not yet available.

Power generation experiments have not yet been performed using non-

thermal ionization as of October, 1962, but experimental equipment is under

construction at C. A. Parsons Nuclear Research Centre49 and the General

Electric Space Sciences Laboratory.
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14.9 a MHD Generator Materials

For the plasma jet and combustion experiments, some initial experiments

were performed using stabilized zirconia for the insulator; however, at high

temperatures the zirconia generally becomes electrically conducting and most

experimenters have changed to magnesia for the insulator. One unexpected

effect is that the resistivity of the ceramic decreases during an experiment; 4 6

it is not yet known whether this is due to the presence of potassium which could

change the chemical composition of the surface of the insulator. The presence

of molten ash will probably intensify this problem.

For very large MHD generators, wall cooling may be possible without

adversely affecting the performance, and experiments have been performed in

which water-cooled tubes ivere used as the insulator. These same tubes can

also serve as the electrodes if the tubes follow equipotential lines as in the

series-segmented geometry, and if an insulation is placed in between the tubes. 5 1

Since the temperature of the tubes is low, presumably the temperature of the

insulation between them will also be low and hence alumina may be satisfactory.

The most commonly used electrode material has been graphite, 3 ' 4 1

46
although silicon carbide has also been utilized. However, zircon compounds

have also been utilized because of their relatively high electrical conductivity,

both with and without embedded tungsten. 4 3 In general, if the electrodes are

sufficiently hot to emit electrons thermionically, there has been almost zero

cathode voltage drop;4 1 otherwise voltage drops up to 100 volts have been

observed. The graphite and carbide electrodes have been observed to erode

very rapidly which is probably due to chemical reactions with water vapor in

the products of combustion. For a continuously operating generator, these

types of electrodes could be continuously fed into the generator, which may

cause a leakage and seal problem if the gas inside the generator is above atmos-

pheric pressure. The pressure of molten ash could interfere with proper oper-

ation of the electrodes as well as the insulator.
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14.9b Seed Material

The seed has generally been injected as a salt, K2 CO or as a hydroxide,

KOH. The salt dissolves readily in water which provides a convenient method

for injection, but powdered potassium carbonate has also been used. The

hydroxide dissolves easily in alcohol, which then can be mixed directly with the

fuel, 43 eliminating the necessity for a separate injection system and also allow-

ing for more precise control of the seed injection rate.

For closed cycle operation, pure alkali metal is required for the seed.

This can be provided by injection of the liquid metal; use of a side stream whizh
9

is bubbled through the liquid metal; a spray evaporator, or a direct boiler for

the liquid metal.

200



REFERENCES

1. J. Faraday, "Experimental Researches in Electricity," Vol. 1, pp 81,

130, 188 (1838).

2. Bela Karlovitz, "History of the K&H Generator and Conclusions Drawn

from the Experimental Results," Proc. Third Symposium on Engineering

Aspects of Magnetohydrodynamics, Gordon and Breach, 1963, N.Y.

3. R. Rosa, "Physical Principles of Magnetohydrodynalnic Power Generation,"

Physics of Fluids, 4, pp 182-114(1961).

4. L.S. Frost, "Conductivity of Seeded Atmospheric Pressure Plasmas,"

Journal of Applied Physics, 32, pp 2029--b(1961).

5. L. Steg and G.W. Sutton, "The Prospects of MHD Power Generation,"

Astronautics, Aug., 1960, pp 22-25, 82, 84-86.

6. H. Hurwitz, Jr., R. Kilb, and G.W. Sutton, "Influence of Tensor Conduc-

tivity on Current Distribution in a MHD Generator," Journal of Applied

Physics, 32, pp 205-216 (1961).

7. L.P. Harris and J.D. Cobine, "The Significance of the Hall Effect for

Three MHD Generator Configurations," Am. Soc. Mech. Engineers Paper

60-WA-329 (1960).

8. H. Hurwitz, Jr., G.W. Sutton, and S. Tomor, "Electron Heating in

Magnetohydrodynamic Power Generators," ARS Journal, 32, pp 1237-1243

(1962).

9. J. Kerrebrock, "Conduction in Gases with Elevated Electron Temperatures,"

2nd Symposium on Engineering Aspects of Magnetohydrodynamics, Columbia

University Press, New York, 1962, pp 327-346.

10. G.W. Sutton and A. Carlson, "End Effects in Inviscid Flow in a Magnetohydro-

dynamic Channel," Journal of Fluid Mechanics, Vol. 11, part 1, pp 121-132,

(1961).

201



11. G.W. Sutton, H. Hurwitz, Jr., and H. Poritsky, Jr., "Electrical and

End Losses in a Magnetohydrodynamic Channel Due to End Current Loops,"

Communications and Electronics (AIEE Transactions) Jan., 1962.

12. F. Fishman, "End Effects in Magnetohydrodynamic Channel Flow,"

Research Report 78, AVCO-Everett Research Laboratory (June, 1959).

13. B. Podolsky and A. Sherman, "Some Aspects of the Hall Effect in Crossed

Field MHD Accelerators," Am. Rocket Society Preprint 1531-60 (1960).

14. B. Podolsky and A. Sherman, "The Influence of Tensor Conductivity on

End Currents in Crossed Field MHD Channels with Skewed Electrodes,"

Journal of Applied Physics, Vol. 33, pp 1414-1418 (1962).

15. H. Yeh and G. W. Sutton, "Velocity Profiles and Efficiency of MHD Gener-

ators with Segmented Electrodes," GE Report R61SD150, Sept., 1961.

16. J.C. Crown, :Analysis of Magnetohydrodynamic Generators Having

Segmented Electrodes and Anistropic Conductivity," United Aircraft

Research Laboratories Report R-1852-2, Feb., 1961.

17. G.W. Sutton, "End Losses in Magnetohydrodynamic Channels With Tensor

Electrical Conductivity and Segmented Electrodes," GE Report R62SD!35,

1962, Journal of Applied Physics.

18. L. S. Dzung, "Hall Effect and End Loop Losses of MHD Generators,"

Symposium on Magnetoplasmadynamic Electrical Power Generation,"

Newcastle upon Tyne, 6-8 Sept. 1962.

19. G.W. Sutton, "Quasi-One-Dimensional Flow of an Electrical Conducting Gas

for the Generation of Electrical Power," GE Report R59SD307, Feb., 1959.

20. G.W. Sutton, "Magnetohydrodynamic Channel Flow of a Perfect Gas for

the Generation of Electrical Power," GE Report R59SD473, Dec., 1959.

21. S. Blecher, "Theoretical Performance Analysis of a Constant Velocity

MHD Generator for Combustion Products of Hydrocarbon and Air," ARS

Journal, 32, 1394-6 (1962).

202



22. A. Sherman, "A High Performance Short Time Duration, MHD Generator

System," American Rocket Society Space Power Conference, Sept., 1962.

Preprint 2558-62.

23. J.E. McCune and W.R. Sears, "On Magnetohydrodynamic Channel Flow,"

Journal of Aero. Sciences, Vol. 27, 139-140 (1960).

24. E. F. Brocher, "The Constant Velocity MHD Generator with Variable

Electrical Conductivity," Journal of Aero/Space Sciences, Vol. 29, pp

626-27 (1962).

25. F. LeBouc, "Conversion de la Chaleur en Electricite par Magnetohydro-

dynamique," Report No. 6647, Inst. Francais du Petrole, Rueil-Malmaison

(S. et-0.), August, 1961.

26. Joseph L. Neuringer, "Optimum Power Generation from a Moving Plasma,"

Journal of Fluid Mechanics, Vol. 7, Part 2, pp 287-301. (Feb., 1960).

27. Mostafa E. Talaat, 'Magnetohydrodynamic Electric Power Generators,"

Advanced Energy Conversion, Vol. 1, pp 19-35 (1961).

28. Bernstein, I.B., Fanucci, J.B., Fischbeck, K.H., Jarem, J.,

Korman, N.I., Kulsrud, R.M., Lessen, M., and Ness, N., "An Elec-

trodeless MHD Generator," Engineering Aspects of Magnetohydrodynamics,

Edited by Clifford Mannal and Norman W. Mather, Columbia University

Press, pp 255-276.
c ,pie cfn 1 .. ',.,\ W',Akure

29. P. Sporn and A. Kantrowitz, APower, Vol. 103, No. 11, pp 62-65 (Nov.,

1959).

30. J.W.W. Brown, "Some Aspects of MHD Power Plant Economics," Proc.

3rd Symposium on Engineering Aspects at Magnetohydrodynamics, Gordon

& Breach Science Publishers, N.Y., 1963.

31. T.R. Brogan, et al, "A Review of Recent MHD Generator Work at the

AVCO-Everett Research Laboratory," ibid.

32. R.C. Allen, "Feasibility of 300 Mwe MHD Power Plant," American Power

Conference, Chicago, March, 1962.

203



33. Stewart Way, "Reduction of Operating Temperature In MHD Power Plants,"

Pacific Energy Conversion Conference, sponsored by AIEE, Aug. 13-16,

1962.

34. S. Way, Round Table on MHD Power Generation held at M.I.T., June 28,

1961.

35. E.T. Pitkin, "Optimum Radiator Temperature for Space Power Systems,

ARS Journal, Vol. 29, pp. 596-7.

36. Robert E. English and Henry 0. Slone, "Comparison of Gas Turbine

Cycles for Space Applications, ARS Journal Vol. 30, No. 11, pp. 1097-

1098 (Nov., 1960).

37. Steven Freedman, "Thermodynamic Considerations for MHD Space Power

Systems," G.E. Report R62SD83, Sept., 1962.

38. D. G. Elliot, "Two-Fluid Magnetohydrodynamic Cycle for Nuclear-Electric

Power Conversion," ARS Journal 32, 924-928 (1962).

39. E. L. Resler, Jr., and N. Rott," Rocket Propulsion with Nuclear Power,"

ARS Journal 30, pp. 1099-1100 (1960).

40. R. J. Rosa, "Magnetohydrodynamic Generators and Nuclear Propulsion,"

ARS Journal, 32, pp. 1221-1230.

41. G.W. Sutton and F. Robben, "Preliminary Experiments on MHD Channel

Flow with Slightly Ionized Gases," Proc. Symp. on Electromagnetics and

Fluid Dynamics of Gaseous Plasma, Polytechnic Press, Brooklyn, 1962,

pp. 307-321.

42. S. Way, S.M. De Corso, R. L. Hundstad, G.A. Kemeney, W. Stewart

and W. E. Young, "Experiments with MHD Power Generation," Trans.

A.S.M.E. 83, A (J. Eng. for Power), p. 397, (1961).

43. V.H. Blackman, M.S. Jones, Jr., and A. Demetriades, "MHD Power

Generation Studies in Rectangular Channels," Proc. 2nd Symp. Eng.

Aspects of Magnetohydrodynamics, Columbia U. Press, N.Y. 1962,

pp. 180-210.

Z04



44. G. J. Mullaney and N. R. Dibelius, "Small MHD Power Generator Using

Combustion Gases as an Energy Source, " ARS Journal, 31, pp. 555-557

(1961).

45. T.R. Brogan, J.F. Louis, R.J. Rosa, Z.J.J. Stekly, "A Review of

Recent MHD Generator Work at the AVCO-Everett Research Laboratory,"

Proc. 3rd Symp. Eng. Aspects of Magnetohydrodynamics, Gordon and

Breach, N.Y., 1963.

46. L. P. Harris and G.E. Moore, "Some Electrical Measurements on MHD

Channels, " Proc. 3rd MHD Symposium, Gordon and Breach, N.Y., 1963.

47. W. S. Brzozowski, Unscheduled paper, Symposium on Magnetoplasma-

dynamic Electrical Power Generation, Newcastle-upon-Tyne, Sept., 1962.

48. New York Times, July 17, 1962.

49. B.C. Lindley, "A Closed Cycle MPD Experiment," Syrup. on Magneto-

plasmadynamic Electrical Power Generation, Newcastle-upon-Tyne,

Sept., 1962.

50. G.W. Sutton and A. Sherman, "Research on Methods of Increasing the

Electrical Conductivity in MHD Generators at the Space Sciences Laboratory

of General Electric Company, " ibid.

51. J. Maycock, D. T. Swf t-Hook, J.K. Wright, "Permanent Insulating Duct

Walls for Magnetohydrodynamic Power Generation," Nature, 196, pp.

260-261 (Oct. 20, 1962).

205



GENERAL * ELECTRIC
SPACE SCIENCES LABORATORY
MISSILE AND SPACE DIVISION

TECHNICAL INFORMATION SERIES
AUT)OI SJUICT CLASSIUICATON NO.

R62SD990
G. W. Sutton Magnetohydrodynamics DAM

Dec. 1962
no 6. 1. CLASS

The Theory of Magnetohydrodynamic I
Power Generators oOV. CAMS

iW2@UCNUi COP Nu AT M UIBIA", NO. PA~M
U@CIIS LIBRA" UNI. VAUWT S PAUE

TOO W KNg OF PRUSSIA, PA. 205

Magnetohydrodynamic power generation has now been under activ
development for over four years, but there has not yet appeared
any complete description of the theory. This report is intended
to close this obvious gap. Most of the theory presented herein
was developed by the author and personnel at the General
Electric Company. Some of this material has not been published
previously; those results which have been published are
referenced.

The topics covered are: electrical conductivity in MHD
generators, optimum "seed" ratio, local analyses of the
continuous and segmented electrode geometries; Hall geometry,
helical flow geometry; magnetically induced ionization;
polytropic efficiencies; compressible analyses of the constant
velocity, temperature, Mach number, pressure and cross-
sectional area flows; end losses; AC generation; cycle
efficiencies; and a summary of generating experiments at the
General Electric Company and other places. Geometries other
than linear are not considered herein; the most important of
those omitted is the vortex generator.
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